Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.5.444

Cathode Catalyst of Direct Borohydride/Hydrogen Peroxide Fuel Cell for Space Exploration  

YU, SU SANG (Department of Mechanical Engineering, College of Mechatronics, Changwon National University)
OH, TAEK HYUN (Department of Mechanical Engineering, College of Mechatronics, Changwon National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.5, 2020 , pp. 444-452 More about this Journal
Abstract
This study investigated the cathode catalyst of direct borohydride/hydrogen peroxide fuel cells for space exploration. Various catalysts such as Au, Ag, and Ni were supported on multiwalled carbon nanotubes (MWCNTs). Various techniques, such as transmission electron microscopy, Brunauer-Emmett-Teller method, scanning electron microscopy, and X-ray diffraction were conducted to investigate the characteristics of the catalysts. Fuel cell tests were performed to evaluate the performance of the catalysts. Ag/MWCNTs exhibited better catalytic activity than the Ni/MWCNTs and better catalytic selectivity of the Au/MWCNTs. Ag/MWCNTs presented good catalytic activity and selectivity even at an elevated operating temperature. The performance of Ag/MWCNTs was also stable for up to 60 minutes.
Keywords
Catalyst; Sodium borohydride; Hydrogen peroxide; Full cell; Space exploration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Haijun, W. Cheng, L. Zhixiang, and M. Zongqiang, "Influence of operation conditions on direct $NaBH_4/H_2O_2$ fuel cell performance", Int. J. Hydrogen Energy, Vol. 35, No. 7, 2010, pp. 2648-2651, doi: https://doi.org/10.1016/j.ijhydene.2009.04.020.   DOI
2 C. P. Leon, F. C. Walsh, C. J. Patrissi, M. G. Medeiros, R. R. Bessette, R. W. Reeve, J. B. Lakeman, A. Rose, and D. Browning, "A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode", Electrochem. Commun., Vol. 10, No. 10, 2008, pp. 1610-1613, doi: https://doi.org/10.1016/j.elecom.2008.08.006.   DOI
3 R. C. P. Oliveira, M. Vasic, D. M. F. Santos, B. Babic, R. Hercigonja, C. A. C. Sequeira, and B. Sljukic, "Performance assessment of a direct borohydride-peroxide fuel cell with Pd-impregnated faujasite X zeolite as anode electrocatalyst", Electrochim. Acta, Vol. 269, 2018, pp. 517-525, doi: https://doi.org/10.1016/j.electacta.2018.03.021.   DOI
4 M. G. Hosseini and R. Mahmoodi, "Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: the effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/multiwalled carbon nanotubes on the cell performance", J. Power Sources, Vol. 370, 2017, pp. 87-97, doi: https://doi.org/10.1016/j.jpowsour.2017.10.017.   DOI
5 R. Mahmoodi, M. G. Hosseini, and H. Rasouli, "Enhancement of output power density and performance of direct borohydride-hydrogen peroxide fuel cell using Ni-Pd core-shell nanoparticles on polymeric composite supports (rGO-PANI) as novel electrocatalysts", Appl. Catal. B-Environ., Vol. 251, 2019, pp. 37-48, doi: https://doi.org/10.1016/j.apcatb.2019.03.064.   DOI
6 R. K. Raman, N. A. Choudhury, and A. K. Shukla, "A high output voltage direct borohydride fuel cell", Electrochem. Solid St., Vol. 7, No. 12, 2004, pp. A488-A491, doi: https://doi.org/10.1149/1.1817855.   DOI
7 T. H. Oh, B. Jang, and S. Kwon, "Electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride-hydrogen peroxide fuel cell", Int. J. Hydrogen Energy, Vol. 39, No. 13, 2014, pp. 6977-6986, doi: https://doi.org/10.1016/j.ijhydene.2014.02.117.   DOI
8 T. H. Oh, B. Jang, and S. Kwon, "Performance evaluation of direct borohydride-hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes", Energy, Vol. 76, 2014, pp. 911-919, doi: https://doi.org/10.1016/j.energy.2014.09.002.   DOI
9 T. H. Oh, B. Jang, and S. Kwon, "Estimating the energy density of direct borohydride-hydrogen peroxide fuel cell s ystems for air-independent propulsion applications", Energy, Vol. 90, No. 1, 2015, pp. 980-986, doi: https://doi.org/10.1016/j.energy.2015.08.002.   DOI
10 T. H. Oh, "Design specifications of direct borohydride-hydrogen peroxide fuel cell system for space missions", Aerosp. Sci. Technol., Vol. 58, 2016, pp. 511-517, doi: https://doi.org/10.1016/j.ast.2016.09.012.   DOI
11 G. H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom, and D. Carroll, "Direct $NaBH_4/H_2O_2$ fuel cells", J. Power Sources, Vol. 165, No. 2, 2007, pp. 509-516, doi: https://doi.org/10.1016/j.jpowsour.2006.10.062.   DOI
12 L. Gu, N. Luo, and G. H. Miley, "Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell", J. Power Sources, Vol. 173, No. 1, 2007, pp. 77-85, doi: https://doi.org/10.1016/j.jpowsour.2007.05.005.   DOI
13 Z. Wang, J. Parrondo, C. He, S. Sankarasubramanian, and V. Ramani, "Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells", Nat. Energy, Vol. 4, No. 4, 2019, pp. 281-289, doi: https://doi.org/10.1038/s41560-019-0330-5.   DOI