• Title/Summary/Keyword: K-let

Search Result 2,363, Processing Time 0.028 seconds

A FORMAL DERIVATION ON INTEGRAL GROUP RINGS FOR CYCLIC GROUPS

  • Joongul Lee
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.678-681
    • /
    • 2023
  • Let G be a cyclic group of prime power order pk, and let I be the augmentation ideal of the integral group ring ℤ[G]. We define a derivation on ℤ/pkℤ[G], and show that for 2 ≤ n ≤ p, an element α ∈ I is in In if and only if the i-th derivative of the image of α in ℤ/pkℤ[G] vanishes for 1 ≤ i ≤ (n - 1).

SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

  • Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.511-528
    • /
    • 2008
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.

REMARKS ON NEIGHBORHOODS OF INDEPENDENT SETS AND (a, b, k)-CRITICAL GRAPHS

  • Zhou, Sizhong;Sun, Zhiren;Xu, Lan
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.669-676
    • /
    • 2013
  • Let $a$ and $b$ be two even integers with $2{\leq}a<b$, and let k be a nonnegative integer. Let G be a graph of order $n$ with $n{\geq}\frac{(a+b-1)(a+b-2)+bk-2}{b}$. A graph G is called an ($a,b,k$)-critical graph if after deleting any $k$ vertices of G the remaining graph of G has an [$a,b$]-factor. In this paper, it is proved that G is an ($a,b,k$)-critical graph if $${\mid}N_G(X){\mid}&gt;\frac{(a-1)n+{\mid}X{\mid}+bk-2}{a+b-1}$$ for every non-empty independent subset X of V (G), and $${\delta}(G)>\frac{(a-1)n+a+b+bk-3}{a+b-1}$$. Furthermore, it is shown that the result in this paper is best possible in some sense.

SEMIPRIME SUBMODULES OF GRADED MULTIPLICATION MODULES

  • Lee, Sang-Cheol;Varmazyar, Rezvan
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.435-447
    • /
    • 2012
  • Let G be a group. Let R be a G-graded commutative ring with identity and M be a G-graded multiplication module over R. A proper graded submodule Q of M is semiprime if whenever $I^nK{\subseteq}Q$, where $I{\subseteq}h(R)$, n is a positive integer, and $K{\subseteq}h(M)$, then $IK{\subseteq}Q$. We characterize semiprime submodules of M. For example, we show that a proper graded submodule Q of M is semiprime if and only if grad$(Q){\cap}h(M)=Q+{\cap}h(M)$. Furthermore if M is finitely generated then we prove that every proper graded submodule of M is contained in a graded semiprime submodule of M. A proper graded submodule Q of M is said to be almost semiprime if (grad(Q)$\cap$h(M))n(grad$(0_M){\cap}h(M)$) = (Q$\cap$h(M))n(grad$(0_M){\cap}Q{\cap}h(M)$). Let K, Q be graded submodules of M. If K and Q are almost semiprime in M such that Q + K $\neq$ M and $Q{\cap}K{\subseteq}M_g$ for all $g{\in}G$, then we prove that Q + K is almost semiprime in M.

ON THE UNIQUENESS OF ENTIRE FUNCTIONS

  • Qiu, Huiling;Fang, Mingliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.109-116
    • /
    • 2004
  • In this paper, we study the uniqueness of entire functions and prove the following result: Let f(z) and g(z) be two nonconstant entire functions, $n\;{\geq}\;7$ a positive integer, and let a be a nonzero finite complex number. If $f^{n}(z)(f(z)\;-\;1)f'(z)\;and\;g^{n}(z)(g(z)\;-\;1)g'(z)$ share a CM, then $f(z)\;{\equiv}\;g(z)$. The result improves the theorem due to ref. [3].

On Graded 2-Absorbing and Graded Weakly 2-Absorbing Primary Ideals

  • Soheilnia, Fatemeh;Darani, Ahmad Yousefian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.559-580
    • /
    • 2017
  • Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper, we define the concept of graded 2-absorbing and graded weakly 2-absorbing primary ideals of commutative G-graded rings with non-zero identity. A number of results and basic properties of graded 2-absorbing primary and graded weakly 2-absorbing primary ideals are given.

UNIQUENESS THEOREM FOR A MEROMORPHIC FUNCTION AND ITS EXACT DIFFERENCE

  • Chen, Shengjiang;Xu, Aizhu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1307-1317
    • /
    • 2020
  • Let f be a nonconstant meromorphic function of hyper order strictly less than 1, and let c be a nonzero finite complex number such that f(z + c) ≢ f(z). We prove that if ∆cf = f(z + c) - f(z) and f share 0, ∞ CM and 1 IM, then ∆cf = f. Our result generalizes and greatly improves the related results.