Browse > Article
http://dx.doi.org/10.5831/HMJ.2015.37.4.431

SLICE THEOREM FOR SEMIALGEBRAICALLY PROPER ACTIONS  

KIM, SANGWOOK (Department of Mathematics, Chonnam National University)
PARK, DAE HEUI (Department of Mathematics, Chonnam National University)
Publication Information
Honam Mathematical Journal / v.37, no.4, 2015 , pp. 431-440 More about this Journal
Abstract
Let G be a semialgebraic group which is not necessarily compact. Let X be a semialgebraically proper G-set such that the orbit space has a semialgebraic structure. In this paper we prove the existence of semialgebraic slices of X. Moreover X can be covered by finitely many semialgebraic G-tubes.
Keywords
noncompact; proper actions; semialgebraic; slice;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Bochnak, M. Coste and M.-F. Roy, Real Agebraic Geometry, Erg. der Math. und ihrer Grenzg., vol. 36, Springer-Verlag, Berlin Heidelberg, 1998.
2 G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, 1972.
3 G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z. 195 (1987), 69-78.   DOI
4 M.-J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean Math. Soc. 41 (2004), 629-646.   DOI
5 M.-J. Choi, D. H. Park, and D. Y. Suh, Proof of semialgebraic covering mapping cylinder conjecture with semialgebraic covering homotopy theorem, Top. Appl. 154 (2007), 69-89.   DOI
6 H. Delfs and M. Knebusch, On the homology of algebraic varieties over real closed fields, J. Reine Angew. Math. 335 (1981), 122-163.
7 H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, Lecture Notes in Math. 1173, Springer, Berlin, 1985.
8 T. tom Dieck, Transformation Groups, Walter de Gruyter, New York, 1987.
9 A. M. Gleason, Space with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35-43.
10 H. Hironaka, Triangulations of algebraic varieties, Proc. Sympos. Pure Math. 29 (1975), 165-185.
11 S. ALojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat. 18(3) (1964), 449-474.
12 D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. 63 (1957), 108-116.
13 G. D. Mostow, Equivariant embeddings in euclidean space, Ann. of Math. 65(3)(1957), 432-446.   DOI
14 D. H. Park and D. Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242 (2002), 725-742.   DOI
15 D. H. Park, On orbit types of semialgebraically proper actions Arch. Math. 101 (2013), 33-41.   DOI
16 C. Scheiderer, Quotients of semi-algebraic spaces, Math. Z. 201 (1989), 249-271.   DOI
17 D. H. Park, A note on semialgebraically proper maps, Ukrainian Math. J. 66(9) (2015), 1414-1422.   DOI