1 |
J. Bochnak, M. Coste and M.-F. Roy, Real Agebraic Geometry, Erg. der Math. und ihrer Grenzg., vol. 36, Springer-Verlag, Berlin Heidelberg, 1998.
|
2 |
G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, 1972.
|
3 |
G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z. 195 (1987), 69-78.
DOI
|
4 |
M.-J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean Math. Soc. 41 (2004), 629-646.
DOI
|
5 |
M.-J. Choi, D. H. Park, and D. Y. Suh, Proof of semialgebraic covering mapping cylinder conjecture with semialgebraic covering homotopy theorem, Top. Appl. 154 (2007), 69-89.
DOI
|
6 |
H. Delfs and M. Knebusch, On the homology of algebraic varieties over real closed fields, J. Reine Angew. Math. 335 (1981), 122-163.
|
7 |
H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, Lecture Notes in Math. 1173, Springer, Berlin, 1985.
|
8 |
T. tom Dieck, Transformation Groups, Walter de Gruyter, New York, 1987.
|
9 |
A. M. Gleason, Space with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35-43.
|
10 |
H. Hironaka, Triangulations of algebraic varieties, Proc. Sympos. Pure Math. 29 (1975), 165-185.
|
11 |
S. ALojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat. 18(3) (1964), 449-474.
|
12 |
D. Montgomery and C. T. Yang, The existence of a slice, Ann. of Math. 63 (1957), 108-116.
|
13 |
G. D. Mostow, Equivariant embeddings in euclidean space, Ann. of Math. 65(3)(1957), 432-446.
DOI
|
14 |
D. H. Park and D. Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242 (2002), 725-742.
DOI
|
15 |
D. H. Park, On orbit types of semialgebraically proper actions Arch. Math. 101 (2013), 33-41.
DOI
|
16 |
C. Scheiderer, Quotients of semi-algebraic spaces, Math. Z. 201 (1989), 249-271.
DOI
|
17 |
D. H. Park, A note on semialgebraically proper maps, Ukrainian Math. J. 66(9) (2015), 1414-1422.
DOI
|