• Title/Summary/Keyword: Jordan automorphism

Search Result 8, Processing Time 0.023 seconds

A LINEAR APPROACH TO LIE TRIPLE AUTOMORPHISMS OF H*-ALGEBRAS

  • Martin, A. J. Calderon;Gonzalez, C. Martin
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.117-132
    • /
    • 2011
  • By developing a linear algebra program involving many different structures associated to a three-graded H*-algebra, it is shown that if L is a Lie triple automorphism of an infinite-dimensional topologically simple associative H*-algebra A, then L is either an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism. If A is finite-dimensional, then there exists an automorphism, an anti-automorphism, the negative of an automorphism or the negative of an anti-automorphism F : A $\rightarrow$ A such that $\delta$:= F - L is a linear map from A onto its center sending commutators to zero. We also describe L in the case of having A zero annihilator.

JORDAN AUTOMORPHIC GENERATORS OF EUCLIDEAN JORDAN ALGEBRAS

  • Kim, Jung-Hwa;Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.507-528
    • /
    • 2006
  • In this paper we show that the Koecher's Jordan automorphic generators of one variable on an irreducible symmetric cone are enough to determine the elements of scalar multiple of the Jordan identity on the attached simple Euclidean Jordan algebra. Its various geometric, Jordan and Lie theoretic interpretations associated to the Cartan-Hadamard metric and Cartan decomposition of the linear automorphisms group of a symmetric cone are given with validity on infinite-dimensional spin factors

MAPS PRESERVING SOME MULTIPLICATIVE STRUCTURES ON STANDARD JORDAN OPERATOR ALGEBRAS

  • Ghorbanipour, Somaye;Hejazian, Shirin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.563-574
    • /
    • 2017
  • Let $\mathcal{A}$ be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension at least 2. We show that every bijection ${\phi}$ on $\mathcal{A}$ satisfying ${\phi}(A^2{\circ}B)={\phi}(A)^2{\circ}{\phi}(B)$ is of the form ${\phi}={\varepsilon}{\psi}$ where ${\psi}$ is an automorphism on $\mathcal{A}$ and ${\varepsilon}{\in}\{-1,1\}$. As a consequence if $\mathcal{A}$ is the real algebra of all self-adjoint operators on a Hilbert space H, then there exists a unitary or conjugate unitary operator U on H such that ${\phi}(A)={\varepsilon}UAU^*$ for all $A{\in}\mathcal{A}$.

GENERALIZED SKEW DERIVATIONS AS JORDAN HOMOMORPHISMS ON MULTILINEAR POLYNOMIALS

  • De Filippis, Vincenzo
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Let $\mathcal{R}$ be a prime ring of characteristic different from 2, $\mathcal{Q}_r$ be its right Martindale quotient ring and $\mathcal{C}$ be its extended centroid. Suppose that $\mathcal{G}$ is a nonzero generalized skew derivation of $\mathcal{R}$, ${\alpha}$ is the associated automorphism of $\mathcal{G}$, f($x_1$, ${\cdots}$, $x_n$) is a non-central multilinear polynomial over $\mathcal{C}$ with n non-commuting variables and $$\mathcal{S}=\{f(r_1,{\cdots},r_n)\left|r_1,{\cdots},r_n{\in}\mathcal{R}\}$$. If $\mathcal{G}$ acts as a Jordan homomorphism on $\mathcal{S}$, then either $\mathcal{G}(x)=x$ for all $x{\in}\mathcal{R}$, or $\mathcal{G}={\alpha}$.

JORDAN ALGEBRAS ASSOCIATED TO T-ALGEBARS

  • Jang, Young-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.179-189
    • /
    • 1995
  • Let $V \subset R^n$ be a convex homogeneous cone which does not contain straight lines, so that the automorphism group $$ G = Aut(R^n, V)^\circ = { g \in GL(R^n) $\mid$ gV = V}^\circ $$ ($\circ$ denoting the identity component) acts transitively on V. A convex cone V is called "self-dual" if V coincides with its dual $$ (1.1) V' = { x' \in R^n $\mid$ < x, x' > > 0 for all x \in \bar{V} - {0}} $$ where $\bar{V}$ denotes the closure of V.sure of V.

  • PDF

A NOTE ON THE OPERATOR EQUATION $\alpha+\alpha^{-1}$=$\beta+\beta^{-1}$

  • Thaheem, A.B.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.167-170
    • /
    • 1986
  • Let M be a von Neumann algebra and .alpha., .betha. be *-automorphisms of M satisfying the operator equation .alpha.+.alpha.$^{-1}$ =.betha.+.betha.$^{-1}$ This operator equation has been extensively studied and many important decomposition theorems have been obtained by several authors (for instance see [4], [5], [2], [1]). Originally, this operator equation arose in the paper of Van Daele on the new approach of the Tomita-Takesaki theory in the case of modular operators ([7]). In the case of one-parameter automorphism groups, this equation has produced a bounded and completely positive map which can play a role similar to the infinitesimal generator (for details see [6] and [1]). A recent and one of the most important applications of this equation has been in developing an anglogue of the Tomita-Takesaki theory for Jordan algebras by Haagerup [3]. One general result of this theory is the following.

  • PDF

RING ENDOMORPHISMS WITH THE REVERSIBLE CONDITION

  • Baser, Muhittin;Kaynarca, Fatma;Kwak, Tai-Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.349-364
    • /
    • 2010
  • P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for a, $b\;{\in}\;R$. Commutative rings and reduced rings are reversible. In this paper, we extend the reversible condition of a ring as follows: Let R be a ring and $\alpha$ an endomorphism of R, we say that R is right (resp., left) $\alpha$-shifting if whenever $a{\alpha}(b)\;=\;0$ (resp., $\alpha{a)b\;=\;0$) for a, $b\;{\in}\;R$, $b{\alpha}{a)\;=\;0$ (resp., $\alpha(b)a\;=\;0$); and the ring R is called $\alpha$-shifting if it is both left and right $\alpha$-shifting. We investigate characterizations of $\alpha$-shifting rings and their related properties, including the trivial extension, Jordan extension and Dorroh extension. In particular, it is shown that for an automorphism $\alpha$ of a ring R, R is right (resp., left) $\alpha$-shifting if and only if Q(R) is right (resp., left) $\bar{\alpha}$-shifting, whenever there exists the classical right quotient ring Q(R) of R.