• Title/Summary/Keyword: Jensen quadratic mapping

Search Result 7, Processing Time 0.019 seconds

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.

APPROXIMATE ADDITIVE-QUADRATIC MAPPINGS AND BI-JENSEN MAPPINGS IN 2-BANACH SPACES

  • Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.467-476
    • /
    • 2017
  • In this paper, we obtain the stability of the additive-quadratic functional equation f(x+y, z+w)+f(x+y, z-w) = 2f(x, z)+2f(x, w)+2f(y, z)+2f(y, w) and the bi-Jensen functional equation $$4f(\frac{x+y}{2},\;\frac{z+w}{2})=f(x,\;z)+f(x,\;w)+f(y,\;z)+f(y,\;w)$$ in 2-Banach spaces.

JENSEN TYPE QUADRATIC-QUADRATIC MAPPING IN BANACH SPACES

  • Park, Choon-Kil;Hong, Seong-Ki;Kim, Myoung-Jung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.703-709
    • /
    • 2006
  • Let X, Y be vector spaces. It is shown that if an even mapping $f:X{\rightarrow}Y$ satisfies f(0) = 0 and $$(0.1)\;f(\frac {x+y} 2+z)+f(\frac {x+y} 2-z)+f(\frac {x-y} 2+z)+f(\frac {x-y} 2-z)=f(x)+f(y)+4f(z)$$ for all x, y, z ${\in}$X, then the mapping $f:X{\rightarrow}Y$ is quadratic. Furthermore, we prove the Cauchy-Rassias stability of the functional equation (0.1) in Banach spaces.

FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES

  • Park, Choonkil;Huh, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.455-466
    • /
    • 2008
  • In, [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\left\|{\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i{\left\|^2+{\sum\limits_{i=1}^{n}}\right\|}{x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}x_j}}\right\|^2}={\sum\limits_{i=1}^{n}}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\cdots},x_{n}{\in}V$. Let V,W be real vector spaces. It is shown that if a mapping $f:V{\rightarrow}W$ satisfies $$(0.1){\hspace{10}}nf{\left({\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i \right)}+{\sum\limits_{i=1}^{n}}f{\left({x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}}x_i}\right)}\\{\hspace{140}}={\sum\limits_{i=1}^{n}}f(x_i)$$ for all $x_1$, ${\dots}$, $x_{n}{\in}V$ $$(0.2){\hspace{10}}2f\(\frac{x+y}{2}\)+f\(\frac{x-y}{2} \)+f\(\frac{y}{2}-x\)\\{\hspace{185}}=f(x)+f(y)$$ for all $x,y{\in}V$. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

  • PDF

A FIXED POINT APPROACH TO THE CAUCHY-RASSIAS STABILITY OF GENERAL JENSEN TYPE QUADRATIC-QUADRATIC MAPPINGS

  • Park, Choon-Kil;Gordji, M. Eshaghi;Khodaei, H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.987-996
    • /
    • 2010
  • In this paper, we investigate the Cauchy-Rassias stability in Banach spaces and also the Cauchy-Rassias stability using the alternative fixed point for the functional equation: $$f(\frac{sx+ty}{2}+rz)+f(\frac{sx+ty}{2}-rz)+f(\frac{sx-ty}{2}+rz)+f(\frac{sx-ty}{2}-rz)=s^2f(x)+t^2f(y)+4r^2f(z)$$ for any fixed nonzero integers s, t, r with $r\;{\neq}\;{\pm}1$.