JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **30**, No. 4, November 2017 http://dx.doi.org/10.14403/jcms.2017.30.4.467

APPROXIMATE ADDITIVE-QUADRATIC MAPPINGS AND BI-JENSEN MAPPINGS IN 2-BANACH SPACES

WON-GIL PARK*

ABSTRACT. In this paper, we obtain the stability of the additivequadratic functional equation

f(x+y,z+w)+f(x+y,z-w) = 2f(x,z)+2f(x,w)+2f(y,z)+2f(y,w)and the bi-Jensen functional equation

$$4f\left(\frac{x+y}{2}, \frac{z+w}{2}\right) = f(x,z) + f(x,w) + f(y,z) + f(y,w)$$

in 2-Banach spaces.

1. Introduction

In 1940, Ulam [10] suggested the stability problem of functional equations concerning the stability of group homomorphisms: Let a group Gand a metric group H with the metric ρ be given. For each $\varepsilon > 0$, the question is whether or not there is a $\delta > 0$ such that if $f: G \to H$ satisfies $\rho(f(xy), f(x)f(y)) < \delta$ for all $x, y \in G$, then there exists a group homomorphism $h: G \to H$ satisfying $\rho(f(x), h(x)) < \varepsilon$ for all $x \in G$.

The stability for functional equations has been investigated by a number of authors [2, 3, 6].

We introduce some definitions on 2-Banach spaces [4, 5].

DEFINITION 1.1. Let X be a real linear space with dim $X \ge 2$ and $\|\cdot, \cdot\|: X^2 \to \mathbb{R}$ be a function. Then $(X, \|\cdot, \cdot\|)$ is called a *linear 2-normed space* if the following conditions hold:

(a) ||x, y|| = 0 if and only if x and y are linearly dependent,

- (b) ||x,y|| = ||y,x||,
- (c) $\|\alpha x, y\| = |\alpha| \|x, y\|$,

(d)
$$||x, y + z|| \le ||x, y|| + ||x, z||$$

Received October 18, 2017; Accepted October 23, 2017.

2010 Mathematics Subject Classification: Primary 39B52; Secondary 39B72.

Key words and phrases: linear 2-normed space, additive-quadratic mapping, bi-Jensen mapping.

for all $\alpha \in \mathbb{R}$ and $x, y, z \in X$. In this case, the function $\|\cdot, \cdot\|$ is called a 2-norm on X.

DEFINITION 1.2. Let $\{x_n\}$ be a sequence in a linear 2-normed space X. The sequence $\{x_n\}$ is said to *convergent* in X if there exits an element $x \in X$ such that

$$\lim_{n \to \infty} \|x_n - x, y\| = 0$$

for all $y \in X$. In this case, we say that a sequence $\{x_n\}$ converges to the limit x, simply dented by $\lim_{n\to\infty} x_n = x$.

DEFINITION 1.3. A sequence $\{x_n\}$ in a linear 2-normed space X is called a *Cauchy sequence* if for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \ge N$, $||x_m - x_n, y|| < \varepsilon$ for all $y \in X$. For convenience, we will write $\lim_{m,n\to\infty} ||x_n - x_m, y|| = 0$ for a Cauchy sequence $\{x_n\}$. A 2-Banach space is defined to be a linear 2-normed space in which every Cauchy sequence is convergent.

In the following lemma, we obtain some basic properties in a linear 2-normed space which will be used to prove the stability results.

LEMMA 1.4. ([2]) Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $x \in X$.

(a) If ||x, y|| = 0 for all $y \in X$, then x = 0.

(b) $|||x, z|| - ||y, z||| \le ||x - y, z||$ for all $x, y, z \in X$.

(c) If a sequence $\{x_n\}$ is convergent in X, then

$$\lim_{n \to \infty} \|x_n, y\| = \|\lim_{n \to \infty} x_n, y\|$$

for all $y \in X$.

Throughout this paper, let X be a normed space and Y be a 2-Banach space. We introduce the definitions of additive-quadratic mappings and bi-Jensen mappings.

DEFINITION 1.5. [8] A mapping $f: X \times X \to Y$ is called a *additive-quadratic* if f satisfies the system of equations

(1.1)
$$\begin{aligned} f(x+y,z) &= f(x,z) + f(y,z), \\ f(x,y+z) + f(x,y-z) &= 2f(x,y) + 2f(x,z). \end{aligned}$$

DEFINITION 1.6. [1] A mapping $f : X \times X \to Y$ is called a *bi-Jensen* mapping if f satisfies the system of equations

(1.2)
$$2f\left(\frac{x+y}{2},z\right) = f(x,z) + f(y,z), \\ 2f\left(x,\frac{y+z}{2}\right) = f(x,y) + f(x,z).$$

468

For a mapping $f: X \times X \to Y$, consider the functional equations:

(1.3)
$$f(x+y,z+w) + f(x+y,z-w) = 2f(x,z) + 2f(x,w) + 2f(y,z) + 2f(y,w)$$

and

(1.4)
$$4f\left(\frac{x+y}{2}, \frac{z+w}{2}\right) = f(x,z) + f(x,w) + f(y,z) + f(y,w).$$

When $X = Y = \mathbb{R}$, the function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by $f(x, y) := axy^2$ and f(x, y) := axy + bx + cy + d are solutions of (1.3) and (1.4), respectively.

In 2005, W.-G. Park, J.-H. Bae and B.-H. Chung [8] obtained the general solution of (1.1) and (1.3) as follows.

THEOREM 1.7. A mapping $f : X \times X \to Y$ satisfies (1.1) if and only if there exist a multi-additive mapping $M : X \times X \times X \to Y$ such that f(x,y) = M(x,y,y) and M(x,y,z) = M(x,z,y) for all $x, y, z \in X$.

THEOREM 1.8. A mapping $f : X \times X \to Y$ satisfies (1.1) if and only if it satisfies (1.3).

In 2006, J.-H. Bae and W.-G. Park [1] obtained the general solution of (1.2) and (1.4) as follows.

THEOREM 1.9. A mapping $f: X \times X \to Y$ satisfies (1.2) if and only if there exist a bi-additive mapping $B: X \times X \to Y$ and two additive mappings $A, A': X \to Y$ such that f(x, y) = B(x, y) + A(x) + A'(y) + f(0, 0) for all $x, y \in X$.

THEOREM 1.10. A mapping $f : X \times X \to Y$ satisfies (1.2) if and only if it satisfies (1.4).

In 2011, W.-G. Park [7] investigate approximate additive, Jensen and quadratic mappings in 2-Banach spaces. In this papaer, we also investigate additive-quadratic mappings and bi-Jensen mappings in 2-Banach spaces with different assumptions from [7].

2. Approximate additive-quadratic mappings

We obtain a result on the stability of (1.1) in 2-Banach spaces as follows.

THEOREM 2.1. Let $\varphi: X^5 \to [0,\infty)$ and $\psi: X^5 \to [0,\infty)$ be two functions satisfying

(2.1)

$$\begin{split} \tilde{\varphi}(x,y,z,u,v) \\ &:= \sum_{j=0}^{\infty} \left[\frac{1}{2^{j+1}} \varphi(2^j x, 2^j y, z, u, v) + \frac{1}{4^j} \varphi(x,y, 2^j z, u, v) \right] < \infty \end{split}$$

and (2.2)

$$\tilde{\psi}(x,y,z,u,v) := \sum_{j=0}^{\infty} \left[\frac{1}{4^{j+1}} \psi(x,2^{j}y,2^{j}z,u,v) + \frac{1}{2^{j}} \psi(2^{j}x,y,z,u,v) \right] < \infty$$

for all $x,y,z,u,v\in X.$ And let $f:X\times X\to Y$ be a surjective mapping such that

(2.3)
$$||f(x+y,z) - f(x,z) - f(y,z), f(u,v)|| \le \varphi(x,y,z,u,v)$$
(2.4)

 $\|f(x, y+z) + f(x, y-z) - 2f(x, y) - 2f(x, z), f(u, v)\| \le \psi(x, y, z, u, v)$

and f(x,0) = 0 for all $x, y, z, u, v \in X$. Then there exist two additivequadratic mappings $F_a, F_q : X \times X \to Y$ such that

(2.5)
$$||f(x,y) - F_a(x,y), w|| \le \tilde{\varphi}(x,x,y,u,v)$$

(2.6)
$$||f(x,y) - F_q(x,y), w|| \le \psi(x,y,y,u,v)$$

for all $x, y, u, v \in X$, where w = f(u, v).

Proof. Putting x = y in (2.3), we have

(2.7)
$$\left\| f(x,z) - \frac{1}{2}f(2x,z), f(u,v) \right\| \le \frac{1}{2}\varphi(x,x,z,u,v)$$

for all $x, z, u, v \in X$. Thus we gain

$$\left\|\frac{1}{2^{j}}f(2^{j}x,z) - \frac{1}{2^{j+1}}f(2^{j+1}x,z), f(u,v)\right\| \le \frac{1}{2^{j+1}}\varphi(2^{j}x,2^{j}x,z,u,v)$$

for all $x, z, u, v \in X$. Replacing z by y, we get

$$\left\|\frac{1}{2^{j}}f(2^{j}x,y) - \frac{1}{2^{j+1}}f(2^{j+1}x,y), f(u,v)\right\| \le \frac{1}{2^{j+1}}\varphi(2^{j}x,2^{j}x,y,u,v)$$

470

for all $x, y, u, v \in X$. For given integer $l, m(0 \le l < m)$, we have (2.8)

$$\left\|\frac{1}{2^{l}}f(2^{l}x,y) - \frac{1}{2^{m}}f(2^{m}x,y), f(u,v)\right\| \le \sum_{j=l}^{m-1} \frac{1}{2^{j+1}}\varphi(2^{j}x,2^{j}x,y,u,v)$$

for all $x, y, u, v \in X$. By (2.1), the sequence $\{\frac{1}{2^j}f(2^jx, y)\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\{\frac{1}{2^j}f(2^jx, y)\}$ converges for all $x, y \in X$. Define $F_a : X \times X \to Y$ by

$$F_a(x,y) := \lim_{j \to \infty} \frac{1}{2^j} f(2^j x, y)$$

for all $x, y \in X$. Putting l = 0 and taking $m \to \infty$ in (2.8), one can obtain the inequality (2.5). By (2.3) and (2.4), we obtain

$$\begin{aligned} \frac{1}{2^{j}} \left\| f(2^{j}x + 2^{j}y, z) - f(2^{j}x, z) - f(2^{j}y, z), f(u, v) \right\| \\ &\leq \frac{1}{2^{j}} \varphi(2^{j}x, 2^{j}y, z, u, v) \end{aligned}$$

and

$$(2.9) \frac{1}{2^{j}} \left\| f(2^{j}x, y+z) + f(2^{j}x, y-z) - 2f(2^{j}x, y) - 2f(2^{j}x, z), f(u, v) \right\| \\ \leq \frac{1}{2^{j}} \psi(2^{j}x, y, z, u, v)$$

for all $x, y, z, u, v \in X$ and all integer j. Letting $j \to \infty$ and using (2.1) and (2.2), we see that F_a is additive-quadratic.

Next, setting y = z in (2.4), we obtain

(2.10)
$$\left\| f(x,y) - \frac{1}{4}f(x,2y), f(u,v) \right\| \le \frac{1}{4}\psi(x,y,y,u,v)$$

for all $x, y, u, v \in X$. By the same method as above, F_q is additivequadratic which satisfies (2.6), where $F_q(x, y) := \lim_{j \to \infty} \frac{1}{4^j} f(x, 2^j y)$ for all $x, y \in X$.

We obtain a result on the stability of (1.3) in 2-Banach spaces as follows.

THEOREM 2.2. Let $\varphi : X^6 \to [0, \infty)$ be a function satisfying (2.11) $\tilde{\varphi}(x, y, z, w, u, v) := \sum_{j=0}^{\infty} \frac{1}{8^{j+1}} \varphi(2^j x, 2^j y, 2^j z, 2^j w, u, v) < \infty$

for all $x,y,z,w,u,v \in X.$ And let $f:X \times X \to Y$ be a surjective mapping such that

$$\begin{array}{l} (2.12) \\ \|f(x+y,z+w) + f(x+y,z-w) - 2f(x,z) \\ & -2f(x,w) - 2f(y,z) - 2f(y,w), f(u,v)\| \leq \varphi(x,y,z,w,u,v) \end{array}$$

and f(x,0) = 0 for all $x, y, z, w, u, v \in X$. Then there exists a unique additive-quadratic mapping $F : X \times X \to Y$ such that

$$\begin{aligned} (2.13) \qquad & \|f(x,y)-F(x,y),f(u,v)\| \leq \tilde{\varphi}(x,x,y,y,u,v) \\ \text{for all } x,y,u,v \in X. \end{aligned}$$

Proof. Putting x = y, z = w in (2.12), we have

$$\left\| f(x,z) - \frac{1}{8} f(2x,2z), f(u,v) \right\| \le \frac{1}{8} \varphi(x,x,z,z,u,v)$$

for all $x, z, u, v \in X$. Thus

$$\left\| \frac{1}{8^{j}} f(2^{j}x, 2^{j}z) - \frac{1}{8^{j+1}} f(2^{j+1}x, 2^{j+1}z), f(u, v) \right\|$$

$$\leq \frac{1}{8^{j+1}} \varphi(2^{j}x, 2^{j}x, 2^{j}z, 2^{j}z, u, v)$$

for all $x, z, u, v \in X$. Replacing z by y in the above inequality, we get

$$\left\| \frac{1}{8^{j}} f(2^{j}x, 2^{j}y) - \frac{1}{8^{j+1}} f(2^{j+1}x, 2^{j+1}y), f(u, v) \right\|$$
$$\leq \frac{1}{8^{j+1}} \varphi(2^{j}x, 2^{j}x, 2^{j}y, 2^{j}y, u, v)$$

for all $x, y, u, v \in X$. For given integers $l, m(0 \le l < m)$,

(2.14)
$$\begin{aligned} \left\| \frac{1}{8^{l}} f(2^{l}x, 2^{l}y) - \frac{1}{8^{m}} f(2^{m}x, 2^{m}y), f(u, v) \right\| \\ &\leq \sum_{j=l}^{m-1} \frac{1}{8^{j+1}} \varphi(2^{j}x, 2^{j}x, 2^{j}y, 2^{j}y, u, v) \end{aligned}$$

for all $x, y, u, v \in X$. By (2.14), the sequence $\{\frac{1}{8^j}f(2^jx, 2^jy)\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\{\frac{1}{8^j}f(2^jx, 2^jy)\}$ converges for all $x, y \in X$. Define $F: X \times X \to Y$ by

$$F(x,y) := \lim_{j \to \infty} \frac{1}{8^j} f(2^j x, 2^j y)$$

for all $x \in X$.

472

Approximate additive-quadratic mappings and bi-Jensen mappings 473

By (2.12), we obtain

$$\begin{aligned} \frac{1}{8^{j}} \left\| f\left(2^{j}(x+y), 2^{j}(z+w)\right) + f\left(2^{j}(x+y), 2^{j}(z-w)\right) - 2f(2^{j}x, 2^{j}z) \\ &- 2f(2^{j}x, 2^{j}w) - 2f(2^{j}y, 2^{j}z) - 2f(2^{j}y, 2^{j}w), f(u,v) \right\| \\ &\leq \frac{1}{8^{j}} \varphi(2^{j}x, 2^{j}y, 2^{j}z, 2^{j}w, u, v) \end{aligned}$$

for all $x, y, z, w, u, v \in X$. Letting $j \to \infty$ and using (2.11), we see that F satisfies (1.3). By Theorem 1.8, F is additive-quadratic. Setting l = 0 and taking $m \to \infty$ in (2.14), one can obtain the inequality (2.13). If $G: X \times X \to Y$ is another additive-quadratic mapping satisfying (2.13),

$$\begin{split} \|F(x,y) - G(x,y), f(u,v)\| \\ &= \frac{1}{8^n} \|F(2^n x, 2^n y) - G(2^n x, 2^n y), f(u,v)\| \\ &\leq \frac{1}{8^n} \|F(2^n x, 2^n y) - f(2^n x, 2^n y), f(u,v)\| \\ &\quad + \frac{1}{8^n} \|f(2^n x, 2^n y) - G(2^n x, 2^n y), f(u,v)\| \\ &\leq \frac{2}{8^n} \tilde{\varphi}(2^n x, 2^n x, 2^n y, 2^n y, u, v) \to 0 \text{ as } n \to \infty \end{split}$$

for all $x, y, u, v \in X$. Hence the mapping F is the unique additivequadratic mapping, as desired.

3. Approximate bi-Jensen mappings

We obtain a result on the stability of (1.2) in 2-Banach spaces as follows.

THEOREM 3.1. Let $\varphi: X^5 \to [0,\infty)$ and $\psi: X^5 \to [0,\infty)$ be two functions such that

$$(3.1) \quad \tilde{\varphi}(x, y, z, u, v)$$
$$:= \sum_{j=0}^{\infty} \frac{1}{3^{j+1}} \left[\varphi(3^j x, 3^j y, z, u, v) + \varphi(x, y, 3^j z, u, v) \right] < \infty$$

and

(3.2)
$$\tilde{\psi}(x,y,z,u,v)$$

:= $\sum_{j=0}^{\infty} \frac{1}{3^{j+1}} \left[\psi(x,3^jy,3^jz,u,v) + \psi(3^jx,y,z,u,v) \right] < \infty$

for all $x, y, z, u, v \in X$. And let $f : X \times X \to Y$ be a mapping such that

(3.3)
$$\left\| 2f\left(\frac{x+y}{2},z\right) - f(x,z) - f(y,z), f(u,v) \right\| \le \varphi(x,y,z,u,v)$$

(3.4) $\left\| 2f\left(x,\frac{y+z}{2}\right) - f(x,y) - f(x,z), f(y,v) \right\| \le \psi(x,y,z,u,v)$

(3.4)
$$\left\| 2f\left(x, \frac{y+z}{2}\right) - f(x,y) - f(x,z), f(u,v) \right\| \le \psi(x,y,z,u,v)$$

for all $x,y,z,u,v\in X.$ Then there exist two bi-Jensen mappings F, $F':X\times X\to Y$ such that

$$\|f(x,y) - f(0,y) - F(x,y), w\| \le \tilde{\varphi}(x, -x, y, u, v) + \tilde{\varphi}(-x, 3x, y, u, v),$$
(3.6)

$$||f(x,y) - f(x,0) - F'(x,y), w|| \le \psi(x,y,-y,u,v) + \psi(x,-y,3y,u,v)$$

for all $x, y, u, v \in X$, where w = f(u, v).

Proof. Letting y = -x in (3.3) and replacing x by -x and y by 3x in (3.3), one can obtain that

$$\begin{aligned} \|2f(0,z) - f(x,z) - f(-x,z), f(u,v)\| &\leq \varphi(x, -x, z, u, v), \\ \|2f(x,z) - f(-x,z) - f(3x,z), f(u,v)\| &\leq \varphi(-x, 3x, z, u, v), \end{aligned}$$

respectively, for all $x, z, u, v \in X$. By the above two inequalities and replacing z by y, we get

$$\begin{aligned} \|3f(x,y) - 2f(0,y) - f(3x,y), f(u,v)\| \\ &\leq \varphi(x, -x, y, u, v) + \varphi(-x, 3x, y, u, v) \end{aligned}$$

for all $x, y, u, v \in X$. Thus we have

$$\begin{split} & \left\| \frac{1}{3^{j}} f(3^{j}x, y) - \frac{2}{3^{j+1}} f(0, y) - \frac{1}{3^{j+1}} f(3^{j+1}x, y), f(u, v) \right\| \\ & \leq \frac{1}{3^{j+1}} \left[\varphi(3^{j}x, -3^{j}x, y, u, v) + \varphi(-3^{j}x, 3^{j+1}x, y, u, v) \right] \end{split}$$

for all $x, y, u, v \in X$ and all j. For given integer $l, m(0 \le l < m)$, we obtain

(3.7)
$$\left\| \frac{1}{3^{l}} f(3^{l}x, y) - \sum_{j=l}^{m-1} \frac{2}{3^{j+1}} f(0, y) - \frac{1}{3^{m}} f(3^{m}x, y), f(u, v) \right\|$$
$$\leq \sum_{j=l}^{m-1} \frac{1}{3^{j+1}} \left[\varphi(3^{j}x, -3^{j}x, y, u, v) + \varphi(-3^{j}x, 3^{j+1}x, y, u, v) \right]$$

for all $x, y, u, v \in X$. By (3.1), the sequence $\{\frac{1}{3^j}f(3^jx, y)\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\{\frac{1}{3^j}f(3^jx, y)\}$ converges for all $x, y \in X$. Define $F: X \times X \to Y$ by

$$F(x,y) := \lim_{j \to \infty} \frac{1}{3^j} f(3^j x, y)$$

for all $x, y \in X$. Putting l = 0 and taking $m \to \infty$ in (3.7), one can obtain the inequality (3.5). By (3.3), we get

$$\left\| \frac{2}{3^{j}} f\left(\frac{3^{j}(x+y)}{2}, y\right) - \frac{1}{3^{j}} f(3^{j}x, y) - \frac{1}{3^{j}} f(3^{j}y, z), f(u, v) \right\|$$

$$\leq \frac{1}{3^{j}} \varphi(3^{j}x, 3^{j}y, y, u, v)$$

for all $x, y, z, u, v \in X$ and all j. By (3.4), we have

$$\begin{aligned} \left\| \frac{2}{3^{j}} f\left(3^{j} x, \frac{y+z}{2}\right) + \frac{1}{3^{j}} f(3^{j} x, y) - \frac{1}{3^{j}} f(3^{j} x, z), f(u, v) \right\| \\ & \leq \frac{1}{3^{j}} \psi(3^{j} x, y, z, u, v) \end{aligned}$$

for all $x, y, z, u, v \in X$ and all j. Letting $j \to \infty$ in the above two inequalities and using (3.1) and (3.2), F is a bi-Jensen mapping.

Define $F': X \times X \to Y$ by

$$F'(x,y) := \lim_{j \to \infty} \frac{1}{3^j} f(x,3^j y)$$

for all $x, y \in X$. By the same method in the above argument, F' is a bi-Jensen mapping satisfying (3.6).

References

- J.-H. Bae and W.-G. Park, On the solution of a bi-Jensen functional equation and its stability, Bull Korean Math. Soc. 43 (2006), 499-507.
- [2] H.-Y. Chu, A. Kim, and J. Park, On the Hyers-Ulam stabilities of functional equations on n-Banach spaces, Math. Nachr. 289 (2016), 1177-1188.

- [3] H.-Y. Chu, J.-S. Park, and S. K. Yoo, A remark on a stability in multi-valued dynamics, J. Chungcheong Math. Soc. 30 (2017), 141-149.
- [4] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115-148.
- [5] S. Gähler, Lineare 2-normierte Räumen, Math. Nachr. 28 (1964), 1-43.
- [6] H.-M. Kim and H. M. Liang, Generalized quadratic functional equation with several variables and its Hyers-Ulam stability, J. Chungcheong Math. Soc. 29 (2016), 83-93.
- [7] W.-G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 (2011), 193-202.
- [8] W.-G. Park, J.-H. Bae, and B.-H. Chung, On an additive quadratic functional equation and its stability, J. Appl. Math. & Computing, 18 (2005), 563-572.
- [9] W.-G. Park and J.-H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl. 323 (2006), 634-645.
- [10] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1960.

*

Department of Mathematics Education Mokwon University Daejeon 35349, Republic of Korea *E-mail*: wgpark@mokwon.ac.kr