APPROXIMATE ADDITIVE-QUADRATIC MAPPINGS AND BI-JENSEN MAPPINGS IN 2-BANACH SPACES

Won-Gil Park*

> AbSTRACT. In this paper, we obtain the stability of the additivequadratic functional equation
> $f(x+y, z+w)+f(x+y, z-w)=2 f(x, z)+2 f(x, w)+2 f(y, z)+2 f(y, w)$
and the bi-Jensen functional equation

$$
4 f\left(\frac{x+y}{2}, \frac{z+w}{2}\right)=f(x, z)+f(x, w)+f(y, z)+f(y, w)
$$

in 2-Banach spaces.

1. Introduction

In 1940, Ulam [10] suggested the stability problem of functional equations concerning the stability of group homomorphisms: Let a group G and a metric group H with the metric ρ be given. For each $\varepsilon>0$, the question is whether or not there is a $\delta>0$ such that if $f: G \rightarrow H$ satisfies $\rho(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then there exists a group homomorphism $h: G \rightarrow H$ satisfying $\rho(f(x), h(x))<\varepsilon$ for all $x \in G$.

The stability for functional equations has been investigated by a number of authors $[2,3,6]$.

We introduce some definitions on 2-Banach spaces $[4,5]$.
Definition 1.1. Let X be a real linear space with $\operatorname{dim} X \geq 2$ and $\|\cdot, \cdot\|: X^{2} \rightarrow \mathbb{R}$ be a function. Then $(X,\|\cdot, \cdot\|)$ is called a linear 2 -normed space if the following conditions hold:
(a) $\|x, y\|=0$ if and only if x and y are linearly dependent,
(b) $\|x, y\|=\|y, x\|$,
(c) $\|\alpha x, y\|=|\alpha|\|x, y\|$,
(d) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$

[^0]for all $\alpha \in \mathbb{R}$ and $x, y, z \in X$. In this case, the function $\|\cdot, \cdot\|$ is called a 2 -norm on X.

Definition 1.2. Let $\left\{x_{n}\right\}$ be a sequence in a linear 2-normed space X. The sequence $\left\{x_{n}\right\}$ is said to convergent in X if there exits an element $x \in X$ such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x, y\right\|=0
$$

for all $y \in X$. In this case, we say that a sequence $\left\{x_{n}\right\}$ converges to the limit x, simply dented by $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 1.3. A sequence $\left\{x_{n}\right\}$ in a linear 2-normed space X is called a Cauchy sequence if for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N,\left\|x_{m}-x_{n}, y\right\|<\varepsilon$ for all $y \in X$. For convenience, we will write $\lim _{m, n \rightarrow \infty}\left\|x_{n}-x_{m}, y\right\|=0$ for a Cauchy sequence $\left\{x_{n}\right\}$. A 2 -Banach space is defined to be a linear 2-normed space in which every Cauchy sequence is convergent.

In the following lemma, we obtain some basic properties in a linear 2 -normed space which will be used to prove the stability results.

Lemma 1.4. ([2]) Let $(X,\|\cdot, \cdot\|)$ be a linear 2-normed space and $x \in$ X.
(a) If $\|x, y\|=0$ for all $y \in X$, then $x=0$.
(b) $|\|x, z\|-\|y, z\|| \leq\|x-y, z\|$ for all $x, y, z \in X$.
(c) If a sequence $\left\{x_{n}\right\}$ is convergent in X, then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}, y\right\|=\left\|\lim _{n \rightarrow \infty} x_{n}, y\right\|
$$

for all $y \in X$.
Throughout this paper, let X be a normed space and Y be a 2-Banach space. We introduce the definitions of additive-quadratic mappings and bi-Jensen mappings.

Definition 1.5. [8] A mapping $f: X \times X \rightarrow Y$ is called a additivequadratic if f satisfies the system of equations

$$
\begin{gather*}
f(x+y, z)=f(x, z)+f(y, z), \\
f(x, y+z)+f(x, y-z)=2 f(x, y)+2 f(x, z) . \tag{1.1}
\end{gather*}
$$

Definition 1.6. [1] A mapping $f: X \times X \rightarrow Y$ is called a bi-Jensen mapping if f satisfies the system of equations

$$
\begin{align*}
& 2 f\left(\frac{x+y}{2}, z\right)=f(x, z)+f(y, z), \tag{1.2}\\
& 2 f\left(x, \frac{y+z}{2}\right)=f(x, y)+f(x, z) .
\end{align*}
$$

For a mapping $f: X \times X \rightarrow Y$, consider the functional equations:

$$
\begin{align*}
f(x+y, z+w) & +f(x+y, z-w) \tag{1.3}\\
& =2 f(x, z)+2 f(x, w)+2 f(y, z)+2 f(y, w)
\end{align*}
$$

and

$$
\begin{equation*}
4 f\left(\frac{x+y}{2}, \frac{z+w}{2}\right)=f(x, z)+f(x, w)+f(y, z)+f(y, w) \tag{1.4}
\end{equation*}
$$

When $X=Y=\mathbb{R}$, the function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x, y):=$ $a x y^{2}$ and $f(x, y):=a x y+b x+c y+d$ are solutions of (1.3) and (1.4), respectively.

In 2005, W.-G. Park, J.-H. Bae and B.-H. Chung [8] obtained the general solution of (1.1) and (1.3) as follows.

Theorem 1.7. A mapping $f: X \times X \rightarrow Y$ satisfies (1.1) if and only if there exist a multi-additive mapping $M: X \times X \times X \rightarrow Y$ such that $f(x, y)=M(x, y, y)$ and $M(x, y, z)=M(x, z, y)$ for all $x, y, z \in X$.

Theorem 1.8. A mapping $f: X \times X \rightarrow Y$ satisfies (1.1) if and only if it satisfies (1.3).

In 2006, J.-H. Bae and W.-G. Park [1] obtained the general solution of (1.2) and (1.4) as follows.

Theorem 1.9. A mapping $f: X \times X \rightarrow Y$ satisfies (1.2) if and only if there exist a bi-additive mapping $B: X \times X \rightarrow Y$ and two additive mappings $A, A^{\prime}: X \rightarrow Y$ such that $f(x, y)=B(x, y)+A(x)+A^{\prime}(y)+$ $f(0,0)$ for all $x, y \in X$.

Theorem 1.10. A mapping $f: X \times X \rightarrow Y$ satisfies (1.2) if and only if it satisfies (1.4).

In 2011, W.-G. Park [7] investigate approximate additive, Jensen and quadratic mappings in 2-Banach spaces. In this papaer, we also investigate additive-quadratic mappings and bi-Jensen mappings in 2-Banach spaces with different assumptions from [7].

2. Approximate additive-quadratic mappings

We obtain a result on the stability of (1.1) in 2-Banach spaces as follows.

Theorem 2.1. Let $\varphi: X^{5} \rightarrow[0, \infty)$ and $\psi: X^{5} \rightarrow[0, \infty)$ be two functions satisfying

$$
\begin{align*}
& \tilde{\varphi}(x, y, z, u, v) \tag{2.1}\\
& \quad:=\sum_{j=0}^{\infty}\left[\frac{1}{2^{j+1}} \varphi\left(2^{j} x, 2^{j} y, z, u, v\right)+\frac{1}{4^{j}} \varphi\left(x, y, 2^{j} z, u, v\right)\right]<\infty
\end{align*}
$$

and
$\tilde{\psi}(x, y, z, u, v):=\sum_{j=0}^{\infty}\left[\frac{1}{4^{j+1}} \psi\left(x, 2^{j} y, 2^{j} z, u, v\right)+\frac{1}{2^{j}} \psi\left(2^{j} x, y, z, u, v\right)\right]<\infty$ for all $x, y, z, u, v \in X$. And let $f: X \times X \rightarrow Y$ be a surjective mapping such that

$$
\begin{equation*}
\|f(x+y, z)-f(x, z)-f(y, z), f(u, v)\| \leq \varphi(x, y, z, u, v) \tag{2.3}
\end{equation*}
$$

$\|f(x, y+z)+f(x, y-z)-2 f(x, y)-2 f(x, z), f(u, v)\| \leq \psi(x, y, z, u, v)$
and $f(x, 0)=0$ for all $x, y, z, u, v \in X$. Then there exist two additivequadratic mappings $F_{a}, F_{q}: X \times X \rightarrow Y$ such that

$$
\begin{align*}
\left\|f(x, y)-F_{a}(x, y), w\right\| & \leq \tilde{\varphi}(x, x, y, u, v) \tag{2.5}\\
\left\|f(x, y)-F_{q}(x, y), w\right\| & \leq \tilde{\psi}(x, y, y, u, v) \tag{2.6}
\end{align*}
$$

for all $x, y, u, v \in X$, where $w=f(u, v)$.
Proof. Putting $x=y$ in (2.3), we have

$$
\begin{equation*}
\left\|f(x, z)-\frac{1}{2} f(2 x, z), f(u, v)\right\| \leq \frac{1}{2} \varphi(x, x, z, u, v) \tag{2.7}
\end{equation*}
$$

for all $x, z, u, v \in X$. Thus we gain

$$
\left\|\frac{1}{2^{j}} f\left(2^{j} x, z\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x, z\right), f(u, v)\right\| \leq \frac{1}{2^{j+1}} \varphi\left(2^{j} x, 2^{j} x, z, u, v\right)
$$

for all $x, z, u, v \in X$. Replacing z by y, we get

$$
\left\|\frac{1}{2^{j}} f\left(2^{j} x, y\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x, y\right), f(u, v)\right\| \leq \frac{1}{2^{j+1}} \varphi\left(2^{j} x, 2^{j} x, y, u, v\right)
$$

for all $x, y, u, v \in X$. For given integer $l, m(0 \leq l<m)$, we have (2.8)

$$
\left\|\frac{1}{2^{l}} f\left(2^{l} x, y\right)-\frac{1}{2^{m}} f\left(2^{m} x, y\right), f(u, v)\right\| \leq \sum_{j=l}^{m-1} \frac{1}{2^{j+1}} \varphi\left(2^{j} x, 2^{j} x, y, u, v\right)
$$

for all $x, y, u, v \in X$. By (2.1), the sequence $\left\{\frac{1}{2^{j}} f\left(2^{j} x, y\right)\right\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{j}} f\left(2^{j} x, y\right)\right\}$ converges for all $x, y \in X$. Define $F_{a}: X \times X \rightarrow Y$ by

$$
F_{a}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right)
$$

for all $x, y \in X$. Putting $l=0$ and taking $m \rightarrow \infty$ in (2.8), one can obtain the inequality (2.5). By (2.3) and (2.4), we obtain

$$
\begin{array}{r}
\frac{1}{2^{j}}\left\|f\left(2^{j} x+2^{j} y, z\right)-f\left(2^{j} x, z\right)-f\left(2^{j} y, z\right), f(u, v)\right\| \\
\leq \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y, z, u, v\right)
\end{array}
$$

and

$$
\begin{align*}
\frac{1}{2^{j}} \| f\left(2^{j} x, y+z\right)+f\left(2^{j} x, y-z\right)-2 f\left(2^{j} x, y\right) & -2 f\left(2^{j} x, z\right), f(u, v) \| \tag{2.9}\\
& \leq \frac{1}{2^{j}} \psi\left(2^{j} x, y, z, u, v\right)
\end{align*}
$$

for all $x, y, z, u, v \in X$ and all integer j. Letting $j \rightarrow \infty$ and using (2.1) and (2.2), we see that F_{a} is additive-quadratic.

Next, setting $y=z$ in (2.4), we obtain

$$
\begin{equation*}
\left\|f(x, y)-\frac{1}{4} f(x, 2 y), f(u, v)\right\| \leq \frac{1}{4} \psi(x, y, y, u, v) \tag{2.10}
\end{equation*}
$$

for all $x, y, u, v \in X$. By the same method as above, F_{q} is additivequadratic which satisfies (2.6), where $F_{q}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{4^{j}} f\left(x, 2^{j} y\right)$ for all $x, y \in X$.

We obtain a result on the stability of (1.3) in 2-Banach spaces as follows.

Theorem 2.2. Let $\varphi: X^{6} \rightarrow[0, \infty)$ be a function satisfying

$$
\begin{equation*}
\tilde{\varphi}(x, y, z, w, u, v):=\sum_{j=0}^{\infty} \frac{1}{8^{j+1}} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} w, u, v\right)<\infty \tag{2.11}
\end{equation*}
$$

for all $x, y, z, w, u, v \in X$. And let $f: X \times X \rightarrow Y$ be a surjective mapping such that

$$
\begin{align*}
& \| f(x+y, z+w)+f(x+y, z-w)-2 f(x, z) \tag{2.12}\\
& \quad-2 f(x, w)-2 f(y, z)-2 f(y, w), f(u, v) \| \leq \varphi(x, y, z, w, u, v)
\end{align*}
$$

and $f(x, 0)=0$ for all $x, y, z, w, u, v \in X$. Then there exists a unique additive-quadratic mapping $F: X \times X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, y)-F(x, y), f(u, v)\| \leq \tilde{\varphi}(x, x, y, y, u, v) \tag{2.13}
\end{equation*}
$$

for all $x, y, u, v \in X$.
Proof. Putting $x=y, z=w$ in (2.12), we have

$$
\left\|f(x, z)-\frac{1}{8} f(2 x, 2 z), f(u, v)\right\| \leq \frac{1}{8} \varphi(x, x, z, z, u, v)
$$

for all $x, z, u, v \in X$. Thus

$$
\begin{aligned}
\| \frac{1}{8^{j}} f\left(2^{j} x, 2^{j} z\right) & -\frac{1}{8^{j+1}} f\left(2^{j+1} x, 2^{j+1} z\right), f(u, v) \| \\
& \leq \frac{1}{8^{j+1}} \varphi\left(2^{j} x, 2^{j} x, 2^{j} z, 2^{j} z, u, v\right)
\end{aligned}
$$

for all $x, z, u, v \in X$. Replacing z by y in the above inequality, we get

$$
\begin{aligned}
\| \frac{1}{8^{j}} f\left(2^{j} x, 2^{j} y\right) & -\frac{1}{8^{j+1}} f\left(2^{j+1} x, 2^{j+1} y\right), f(u, v) \| \\
& \leq \frac{1}{8^{j+1}} \varphi\left(2^{j} x, 2^{j} x, 2^{j} y, 2^{j} y, u, v\right)
\end{aligned}
$$

for all $x, y, u, v \in X$. For given integers $l, m(0 \leq l<m)$,

$$
\begin{array}{r}
\left\|\frac{1}{8^{l}} f\left(2^{l} x, 2^{l} y\right)-\frac{1}{8^{m}} f\left(2^{m} x, 2^{m} y\right), f(u, v)\right\| \\
\quad \leq \sum_{j=l}^{m-1} \frac{1}{8^{j+1}} \varphi\left(2^{j} x, 2^{j} x, 2^{j} y, 2^{j} y, u, v\right) \tag{2.14}
\end{array}
$$

for all $x, y, u, v \in X . \quad$ By (2.14), the sequence $\left\{\frac{1}{8^{j}} f\left(2^{j} x, 2^{j} y\right)\right\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\left\{\frac{1}{8^{j}} f\left(2^{j} x, 2^{j} y\right)\right\}$ converges for all $x, y \in X$. Define $F: X \times X \rightarrow Y$ by

$$
F(x, y):=\lim _{j \rightarrow \infty} \frac{1}{8^{j}} f\left(2^{j} x, 2^{j} y\right)
$$

for all $x \in X$.

By (2.12), we obtain

$$
\begin{aligned}
& \frac{1}{8^{j}} \| f\left(2^{j}(x+y), 2^{j}(z+w)\right)+f\left(2^{j}(x+y), 2^{j}(z-w)\right)-2 f\left(2^{j} x, 2^{j} z\right) \\
& \quad-2 f\left(2^{j} x, 2^{j} w\right)-2 f\left(2^{j} y, 2^{j} z\right)-2 f\left(2^{j} y, 2^{j} w\right), f(u, v) \| \\
& \leq \frac{1}{8^{j}} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} w, u, v\right)
\end{aligned}
$$

for all $x, y, z, w, u, v \in X$. Letting $j \rightarrow \infty$ and using (2.11), we see that F satisfies (1.3). By Theorem 1.8, F is additive-quadratic. Setting $l=0$ and taking $m \rightarrow \infty$ in (2.14), one can obtain the inequality (2.13). If $G: X \times X \rightarrow Y$ is another additive-quadratic mapping satisfying (2.13),

$$
\begin{aligned}
& \|F(x, y)-G(x, y), f(u, v)\| \\
& \begin{array}{l}
=\frac{1}{8^{n}}\left\|F\left(2^{n} x, 2^{n} y\right)-G\left(2^{n} x, 2^{n} y\right), f(u, v)\right\| \\
\leq
\end{array} \begin{array}{l}
\frac{1}{8^{n}}\left\|F\left(2^{n} x, 2^{n} y\right)-f\left(2^{n} x, 2^{n} y\right), f(u, v)\right\| \\
\\
\quad \quad+\frac{1}{8^{n}}\left\|f\left(2^{n} x, 2^{n} y\right)-G\left(2^{n} x, 2^{n} y\right), f(u, v)\right\| \\
\leq
\end{array} \begin{array}{l}
\frac{2}{8^{n}} \tilde{\varphi}\left(2^{n} x, 2^{n} x, 2^{n} y, 2^{n} y, u, v\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{array}
\end{aligned}
$$

for all $x, y, u, v \in X$. Hence the mapping F is the unique additivequadratic mapping, as desired.

3. Approximate bi-Jensen mappings

We obtain a result on the stability of (1.2) in 2-Banach spaces as follows.

Theorem 3.1. Let $\varphi: X^{5} \rightarrow[0, \infty)$ and $\psi: X^{5} \rightarrow[0, \infty)$ be two functions such that
(3.1) $\tilde{\varphi}(x, y, z, u, v)$

$$
:=\sum_{j=0}^{\infty} \frac{1}{3^{j+1}}\left[\varphi\left(3^{j} x, 3^{j} y, z, u, v\right)+\varphi\left(x, y, 3^{j} z, u, v\right)\right]<\infty
$$

and

$$
\begin{align*}
& \tilde{\psi}(x, y, z, u, v) \tag{3.2}\\
& \quad:=\sum_{j=0}^{\infty} \frac{1}{3^{j+1}}\left[\psi\left(x, 3^{j} y, 3^{j} z, u, v\right)+\psi\left(3^{j} x, y, z, u, v\right)\right]<\infty
\end{align*}
$$

for all $x, y, z, u, v \in X$. And let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{align*}
& \left\|2 f\left(\frac{x+y}{2}, z\right)-f(x, z)-f(y, z), f(u, v)\right\| \leq \varphi(x, y, z, u, v) \tag{3.3}\\
& \left\|2 f\left(x, \frac{y+z}{2}\right)-f(x, y)-f(x, z), f(u, v)\right\| \leq \psi(x, y, z, u, v) \tag{3.4}
\end{align*}
$$

for all $x, y, z, u, v \in X$. Then there exist two bi-Jensen mappings F, $F^{\prime}: X \times X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, y)-f(0, y)-F(x, y), w\| \leq \tilde{\varphi}(x,-x, y, u, v)+\tilde{\varphi}(-x, 3 x, y, u, v) \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f(x, y)-f(x, 0)-F^{\prime}(x, y), w\right\| \leq \tilde{\psi}(x, y,-y, u, v)+\tilde{\psi}(x,-y, 3 y, u, v) \tag{3.6}
\end{equation*}
$$

for all $x, y, u, v \in X$, where $w=f(u, v)$.
Proof. Letting $y=-x$ in (3.3) and replacing x by $-x$ and y by $3 x$ in (3.3), one can obtain that

$$
\begin{aligned}
\|2 f(0, z)-f(x, z)-f(-x, z), f(u, v)\| & \leq \varphi(x,-x, z, u, v) \\
\|2 f(x, z)-f(-x, z)-f(3 x, z), f(u, v)\| & \leq \varphi(-x, 3 x, z, u, v)
\end{aligned}
$$

respectively, for all $x, z, u, v \in X$. By the above two inequalities and replacing z by y, we get

$$
\begin{array}{r}
\|3 f(x, y)-2 f(0, y)-f(3 x, y), f(u, v)\| \\
\leq \varphi(x,-x, y, u, v)+\varphi(-x, 3 x, y, u, v)
\end{array}
$$

for all $x, y, u, v \in X$. Thus we have

$$
\begin{aligned}
& \left\|\frac{1}{3^{j}} f\left(3^{j} x, y\right)-\frac{2}{3^{j+1}} f(0, y)-\frac{1}{3^{j+1}} f\left(3^{j+1} x, y\right), f(u, v)\right\| \\
& \leq \frac{1}{3^{j+1}}\left[\varphi\left(3^{j} x,-3^{j} x, y, u, v\right)+\varphi\left(-3^{j} x, 3^{j+1} x, y, u, v\right)\right]
\end{aligned}
$$

for all $x, y, u, v \in X$ and all j. For given integer $l, m(0 \leq l<m)$, we obtain

$$
\begin{align*}
& \left\|\frac{1}{3^{l}} f\left(3^{l} x, y\right)-\sum_{j=l}^{m-1} \frac{2}{3^{j+1}} f(0, y)-\frac{1}{3^{m}} f\left(3^{m} x, y\right), f(u, v)\right\| \tag{3.7}\\
\leq & \sum_{j=l}^{m-1} \frac{1}{3^{j+1}}\left[\varphi\left(3^{j} x,-3^{j} x, y, u, v\right)+\varphi\left(-3^{j} x, 3^{j+1} x, y, u, v\right)\right]
\end{align*}
$$

for all $x, y, u, v \in X$. By (3.1), the sequence $\left\{\frac{1}{3^{j}} f\left(3^{j} x, y\right)\right\}$ is a Cauchy sequence for all $x, y \in X$. Since Y is complete, the sequence $\left\{\frac{1}{3^{j}} f\left(3^{j} x, y\right)\right\}$ converges for all $x, y \in X$. Define $F: X \times X \rightarrow Y$ by

$$
F(x, y):=\lim _{j \rightarrow \infty} \frac{1}{3^{j}} f\left(3^{j} x, y\right)
$$

for all $x, y \in X$. Putting $l=0$ and taking $m \rightarrow \infty$ in (3.7), one can obtain the inequality (3.5). By (3.3), we get

$$
\begin{aligned}
\| \frac{2}{3^{j}} f\left(\frac{3^{j}(x+y)}{2}, y\right)-\frac{1}{3^{j}} f\left(3^{j} x, y\right) & -\frac{1}{3^{j}} f\left(3^{j} y, z\right), f(u, v) \| \\
& \leq \frac{1}{3^{j}} \varphi\left(3^{j} x, 3^{j} y, y, u, v\right)
\end{aligned}
$$

for all $x, y, z, u, v \in X$ and all j. By (3.4), we have

$$
\begin{aligned}
\| \frac{2}{3^{j}} f\left(3^{j} x, \frac{y+z}{2}\right)+\frac{1}{3^{j}} f\left(3^{j} x, y\right)- & \frac{1}{3^{j}} f\left(3^{j} x, z\right), f(u, v) \| \\
& \leq \frac{1}{3^{j}} \psi\left(3^{j} x, y, z, u, v\right)
\end{aligned}
$$

for all $x, y, z, u, v \in X$ and all j. Letting $j \rightarrow \infty$ in the above two inequalities and using (3.1) and (3.2), F is a bi-Jensen mapping.

Define $F^{\prime}: X \times X \rightarrow Y$ by

$$
F^{\prime}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{3^{j}} f\left(x, 3^{j} y\right)
$$

for all $x, y \in X$. By the same method in the above argument, F^{\prime} is a bi-Jensen mapping satisfying (3.6).

References

[1] J.-H. Bae and W.-G. Park, On the solution of a bi-Jensen functional equation and its stability, Bull Korean Math. Soc. 43 (2006), 499-507.
[2] H.-Y. Chu, A. Kim, and J. Park, On the Hyers-Ulam stabilities of functional equations on n-Banach spaces, Math. Nachr. 289 (2016), 1177-1188.
[3] H.-Y. Chu, J.-S. Park, and S. K. Yoo, A remark on a stability in multi-valued dynamics, J. Chungcheong Math. Soc. 30 (2017), 141-149.
[4] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115-148.
[5] S. Gähler, Lineare 2-normierte Räumen, Math. Nachr. 28 (1964), 1-43.
[6] H.-M. Kim and H. M. Liang, Generalized quadratic functional equation with several variables and its Hyers-Ulam stability, J. Chungcheong Math. Soc. 29 (2016), 83-93.
[7] W.-G. Park, Approximate additive mappings in 2-Banach spaces and related top$i c s$, J. Math. Anal. Appl. 376 (2011), 193-202.
[8] W.-G. Park, J.-H. Bae, and B.-H. Chung, On an additive quadratic functional equation and its stability, J. Appl. Math. \& Computing, 18 (2005), 563-572.
[9] W.-G. Park and J.-H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl. 323 (2006), 634-645.
[10] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1960.
*
Department of Mathematics Education
Mokwon University
Daejeon 35349, Republic of Korea
E-mail: wgpark@mokwon.ac.kr

[^0]: Received October 18, 2017; Accepted October 23, 2017.
 2010 Mathematics Subject Classification: Primary 39B52; Secondary 39B72.
 Key words and phrases: linear 2-normed space, additive-quadratic mapping, biJensen mapping.

