1 |
C. Park, Generalized quadratic mappings in several variables, Nonlinear Anal-ysis-TMA 57 (2004), 713-722
DOI
ScienceOn
|
2 |
C. Park, J. Park and J. Shin, Hyers-Ulam-Rassias stability of quadratic functional equations in Banach modules over a -algebra, Chinese Ann. Math. Series B 24 (2003), 261-266
DOI
ScienceOn
|
3 |
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300
|
4 |
Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378
DOI
ScienceOn
|
5 |
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284
DOI
ScienceOn
|
6 |
Th. M. Rassias and P. Semrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338
DOI
ScienceOn
|
7 |
F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129
DOI
|
8 |
C. Baak, S. Hong, and M. Kim, Generalized quadratic mappings of -type in several variables, J. Math. Anal. Appl. 310 (2005), 116-127
DOI
ScienceOn
|
9 |
Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. abes-Bolyai XLIII (1998), no. 3, 89-124
|
10 |
Th. M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253
DOI
ScienceOn
|
11 |
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86
DOI
|
12 |
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64
DOI
|
13 |
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130
DOI
|
14 |
T. Trif, Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), 253-267
DOI
ScienceOn
|
15 |
S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960
|
16 |
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436
DOI
ScienceOn
|
17 |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224
|
18 |
J. Kang, C. Lee and Y. Lee, A note on the Hyers-Ulam-Rassias stability of a quadratic equation, Bull. Korean Math. Soc. 41 (2004), 541-557
DOI
ScienceOn
|
19 |
C. Park, On the Hyers-Ulam-Rassias stability of generalized quadratic mappings in Banach modules, J. Math. Anal. Appl. 291 (2004), 214-223
DOI
ScienceOn
|