• 제목/요약/키워드: Jeffreys′ prior

검색결과 40건 처리시간 0.021초

Noninformative priors for the scale parameter in the generalized Pareto distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1521-1529
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the scale parameter is of interest. We developed the rst order and the second order matching priors. We revealed that the second order matching prior does not exist. It turns out that the reference prior and Jeffrey's prior do not satisfy a first order matching criterion, and Jeffreys' prior, the reference prior and the matching prior are different. Some simulation study is performed and a real example is given.

Bayesian Testing for the Shape Parameter of Gamma Distribution : An Encompassing Approach

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.861-870
    • /
    • 2005
  • The Bayesian model selection procedures for the shape parameter of gamma distribution are proposed in order to test that the failure rate of gamma distribution is constant, increasing or decreasing. The encompassing intrinsic Bayes factor by Beger and Pericchi (1996) based on Jeffreys prior for shape parameter is used to investigate the usefulness of the proposed Bayesian model selection procedures via both real data and pseudo data.

  • PDF

Bayesian Analysis for the Ratio of Variance Components

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.559-568
    • /
    • 2006
  • In this paper, we develop the noninformative priors for the linear mixed models when the parameter of interest is the ratio of variance components. We developed the first and second order matching priors. We reveal that the one-at-a-time reference prior satisfies the second order matching criterion. It turns out that the two group reference prior satisfies a first order matching criterion, but Jeffreys' prior is not first order matching prior. Some simulation study is performed.

  • PDF

A Bayesian Criterion for a Multiple test of Two Multivariate Normal Populations

  • 김혜중;손영숙
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.147-152
    • /
    • 2000
  • A Bayesian criterion is proposed for a multiple test of two independent multivariate normal populations. For a Bayesian test the fractional Bayes facto.(FBF) of O'Hagan(1995) is used under the assumption of Jeffreys priors, noninformative improper proirs. In this test the FBF without the need of sampling minimal training samples is much simpler to use than the intrinsic Bayes facotr(IBF) of Berger and Pericchi(1996). Finally, a simulation study is performed to show the behaviors of the FBF.

  • PDF

Reference Priors in a Two-Way Mixed-Effects Analysis of Variance Model

  • 장인홍;김병휘
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.317-328
    • /
    • 2002
  • We first derive group ordering reference priors in a two-way mixed-effects analysis of variance (ANOVA) model. We show that posterior distributions are proper and provide marginal posterior distributions under reference priors. We also examine whether the reference priors satisfy the probability matching criterion. Finally, the reference prior satisfying the probability matching criterion is shown to be good in the sense of frequentist coverage probability of the posterior quantile.

  • PDF

A Study on Noninformative Priors of Intraclass Correlation Coefficients in Familial Data

  • Jin, Bong-Soo;Kim, Byung-Hwee
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.395-411
    • /
    • 2005
  • In this paper, we develop the Jeffreys' prior, reference prior and the the probability matching priors for the difference of intraclass correlation coefficients in familial data. e prove the sufficient condition for propriety of posterior distributions. Using marginal posterior distributions under those noninformative priors, we compare posterior quantiles and frequentist coverage probability.

Noninformative priors for product of exponential means

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권3호
    • /
    • pp.763-772
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the product of different powers of k means in the exponential distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is the highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior, and Jeffreys' prior and reference prior are the same. We showed that the proposed reference prior matches very well the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative priors for the ratio of the scale parameters in the half logistic distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.833-841
    • /
    • 2012
  • In this paper, we develop the noninformative priors for the ratio of the scale parameters in the half logistic distributions. We develop the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is a highest posterior density matching prior. Also we reveal that the one-at-a-time reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Noninformative Priors for the Intraclass Coefficient of a Symmetric Normal Distribution

  • Chang, In-Hong;Kim, Byung-Hwee
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.15-19
    • /
    • 2003
  • In this paper, we develop the Jeffreys' prior, reference priors and the probability matching priors for the intraclass correlation coefficient of a symmetric normal distribution. We next verify propriety of posterior distributions under those noninformative priors. We examine whether reference priors satisfy the probability matching criterion.

  • PDF

Bayesian Estimations of the Smaller and Larger for Two Pareto Scale Parameters

  • Woo, Jungsoo;Lee, Changsoo
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.829-836
    • /
    • 2000
  • We shall derive Bayes estimators for he smaller and larger of two Pareto scale parameters with a common known shape parameter when the order of the scales is unknown and sample sizes are equal under squared error loss function. Also, we shall obtain biases and man squared errors for proposed Bayes estimators, and compare numerically performances for the proposed Bayes estimators.

  • PDF