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Abstract

In this paper, we develop the noninformative priors for the linear mixed 
models when the parameter of interest is the ratio of variance 
components. We developed the first and second order matching priors. We 
reveal that the one-at-a-time reference prior satisfies the second order 
matching criterion. It turns out that the two group reference prior satisfies 
a first order matching criterion, but Jeffreys' prior is not first order 
matching prior. Some simulation study is performed.
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1. Inroduction

Consider the linear mixed model:

y ij= x
T
ijβ+α i+ε ij,i=1,…,k, j=1,…,n,                  (1)

where x ij  is the p×1  vector of known covariates, β  is the p×1  vector of 

unknown regression parameters. Also ε ij∼N( 0,σ
2
)  and α i∼N( 0,σ

2
α )  are 

independently distributed. Let θ 1=σ
2
α /σ

2  be our of interest.

The present paper focuses on noninformative priors for θ 1 . We consider 

Bayesian priors such that the resulting credible intervals for θ 1  have coverage 

probabilities equivalent to their frequentist counterparts. Although this matching 
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can be justified only asymptotically, our simulation results indicate that this is 

indeed achieved for small or moderate sample sizes as well.

This matching idea goes back to Welch and Peers (1963). Interest in such priors 

revived with the work of Stein (1985) and Tibshirani (1989). Among others, we 

may cite the work of Mukerjee and Dey (1993), DiCiccio and Stern (1994), Datta 

and Ghosh (1995a,b, 1996), Mukerjee and Ghosh (1997), Kang, Kim and Lee (2005).

On the other hand, Ghosh and Mukerjee (1992), and Berger and Bernardo 

(1989,1992) extended Bernardo's (1979) reference prior approach, giving a general 

algorithm to derive a reference prior by splitting the parameters into several 

groups according to their order of inferential importance. This approach is very 

successful in various practical problems. Quite often reference priors satisfy the 

matching criterion described earlier.

The ratio of variance components in random effect models has been of interest 

for a long time. Especially in animal science, this ratio is usually used to estimate 

the genetic heritability of a certain trait of livestock breeders (Graybill et al., 

1956). One difficult part of the analysis of the random effect models from the 

sampling theory of view is the possible negative estimates for σ
2
α
 as well as for 

θ 1 . Thus a Bayesian analysis for this model is desirable, not only because of its 

intrinsic merit, but also because it can resolve this problem. 

The problem of estimating variance components in the one-way random effect 

model has been investigated by many authors from the Bayesian point of view. 

We may refer to Hill (1965), Box and Tiao (1973), Palmer and Broemeling (1990), 

among others. For noninformative priors, Ye (1994) developed the reference priors 

for θ 1 , examined frequentist coverage probabilities for various θ 1  and compared 

risk functions of the Bayes estimators for reference priors. Kim, Kang and Lee 

(2001) provided a class of second order probability matching priors for θ 1 . It is 

shown that among all of the reference priors, the only one-at-a-time reference 

prior satisfies a second order matching criterion. 

The considered model is a general class model that strictly contains the 

balanced one-way random effect model (Ye, 1994). The outline of the remaining 

sections is as follows. In Section 2, we develop first order and second order 

probability matching priors for θ 1 . Also we derive the reference priors for the 

parameters. It turns out that the two group and the one-at-a-time reference priors 

satisfies a first order matching criterion, but Jeffreys' prior is not a first order 

matching prior. Also the one-at-a-time reference prior is a second order matching 

prior. We provide that the propriety of the posterior distribution for the reference 

priors as well as the second order matching prior. In Section 4, simulated 

frequentist coverage probabilities under the proposed priors are given.
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2. The Noninformative Priors

2.1 The Probability Matching Priors

For a prior π , let θ
1- α
1 (π ;Y)  denote the (1-α)th percentile of the posterior 

distribution of θ 1 , that is,

P
π
[θ 1≤θ

1-α
1 (π ;Y)∣Y]= 1-α,                       (2)

where θ= ( θ 1,…,θ t)
T  and θ 1  is the parameter of interest. We want to find 

priors π  for which

P[θ 1≤θ
1- α
1 (π ;Y)∣θ]= 1- α+ o(n- u) ,                 (3)

for some u > 0 , as n  goes to infinity. Priors π  satisfying (3) are called matching 

priors. If u= 1/2 , then π  is referred to as a first order matching prior, while if

u=1 , π  is referred to as a second order matching prior.

In order to find such matching priors π , let

θ 1 = σ2α/σ
2 , θ 2 = σ- 2α (1+nσ

2
α/σ

2)- 1/n  and θ 3= β .

With this parametrization, the likelihood function of parameters ( θ 1,θ 2,θ 3)  for 

the model (1) is given by

L(θ 1,θ 2,θ 3)

∝θ

N
2

exp -
θ 2(1+nθ 1)

1/n

2 ∑
k

i=1
(y i-X iθ 3)

T
(I-

θ 1
1+nθ 1

J)(y i-X iθ 3),2

             (4)

where Xi=( x i1,…,x in)
T  is the n×p  design matrix, y i=(y i1,…,y in)

T  is the 

n×1  vector, I  is the identity matrix of order n , J  is the n×n  matrix with each 

element equal to 1 and N= nk . Based on (4), the Fisher information matrix is 

given by

I F=Diag {I 11,I 22,I 33},

where I 11=
1
2
kn(n-1) (1+nθ 1)

- 2, I 22=
nk
2
θ
- 2
2
 and I 33= θ 2(1+nθ 1)

1/n     

∑
k

i=1
(XTi X i-

θ1
1+nθ 1

XTi JX i) . From the above Fisher information matrix IF, θ 1  



Sang Gil Kang562

is orthogonal to ( θ 2 ,θ 3)  in the sense of Cox and Reid(1987). Following 

Tibshirani(1989), the class of first order probability matching prior is characterized 

by

π ( 1)m (θ 1 ,θ 2,θ 3) ∝ (1+nθ 1)
- 1d( θ 2,θ 3) ,                   (5)

where d( θ 2,θ 3)> 0  is an arbitrary function differentiable in its arguments. 

The class of prior given in (5) can be narrowed down to the second order 

probability matching priors as given in Mukerjee and Ghosh (1997). A second 

order probability matching prior is of the form (5), and also d  must satisfy an 

additional differential equation (cf (2.10)) of Mukerjee and Ghosh (1997), namely

1
6
d(θ 2,θ 3)

∂
∂θ 1

{I
-
3
2

11 L 1, 1, 1 }+
∂
∂θ 2

{I
-
1
2

11 L 112I
22
d(θ 2,θ 3) }

+ ∑
p+ 2

v= 3
∑
p+ 2

s= 3

∂
∂θ v

{I
-
1
2

11 L 11sI
svd(θ 2,θ 3) }= 0,

       (6)

where

L 1, 1, 1= E[ (
∂ logL
∂θ 1

)
3
]= c 1 (1+nθ 1)

- 3
,  c 1= a constant

L 112= E[
∂
3
logL

∂θ21∂θ 2
]= c 2 θ

- 1
2 (1+nθ 1)

- 2,  c 2= a constant

L 11k= E[
∂
3
logL

∂θ21∂θ k
]= 0, k= 3,…,p+2,

I 11=
1
2
kn(n-1) (1+nθ 1)

- 2 , I 22=
2
nk
θ22 .

Then (6) simplifies to

∂
∂θ 2

{θ 2d(θ 2,θ 3) }= 0 .                        (7)

Hence the set of solution of (7) is of the form

d(θ 2,θ 3)= θ
- 1
2 h(θ 3),

where h(θ 3)> 0  is an arbitrary function differentiable in its arguments. Thus the 

resulting second order probability matching prior is given by

π ( 2)m ( θ 1,θ 2,θ 3) ∝ (1+nθ 1)
- 1θ - 12 h(θ 3).                 (8)
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2.2 The Reference Priors

Reference priors introduced by Barnardo (1979), and extended further by Berger 

and Barnardo (1992) have become very popular over the years for the development 

of noninformative priors. In this section, we derive the reference priors for 

different groups of ordering of ( θ 1,θ 2,θ 3) . Then due to the orthogonality of the 

parameters, following Datta and Ghosh (1995b), choosing rectangular compacts for 

each θ 1 , θ 2  and θ 3  when θ 1  is the parameter of interest, the reference priors 

are given by as follows.

For the linear mixed model (1), if θ 1  is the parameter of interest, then the 

reference prior distribution for group of ordering of {(θ 1,θ 2,θ 3) }  is

π 1 ∝ θ
-
2- p
2

2 (1+nθ 1)
p- 2n
2n
| ∑
k

i=1
(X

T
i X i-

θ1
1+nθ 1

X
T
i JX i)|

1
2
.

For group of ordering of {θ 1,(θ 2,θ 3) } , the reference prior is

π 2 ∝ θ
-
2- p
2

2 ( 1+nθ 1)
- 1.

And for group of ordering of {θ 1,θ 2,θ 3} , the reference prior is

π 3 ∝ θ
- 1
2 ( 1+nθ 1)

- 1
.

Remark 2. The reference priors π 2  and π 3  satisfy a first order matching 

criterion, but Jeffreys' prior π 1  is not a first order matching prior. The one-at 

-a-time reference prior satisfies the second order matching criterion.

Notice that the matching priors (8) include many different matching priors 

because of the arbitrary selection of the function h . The θ 3  is the location 

parameter vector. So we consider a particular second order matching prior where 

h  is a constant in matching priors. Because the matching priors based on the 

selection of this function  are exactly the one-at-a-time reference priors. This 

prior is given by

π ( 2)m ( θ 1,θ 2,θ 3) ∝ (1+nθ 1)
- 1θ - 12 .                    (9)
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3. Implementation of the Bayesian Procedure

We investigate the propriety of posteriors for a general class of priors which 

include the reference priors and the second order matching prior (9). We consider 

the class of priors

π G( θ 1,θ 2,θ 3) ∝ (1+nθ 1)
- aθ - b2 .                     (10)

where a > 0  and b > 0 . The following general theorem can be proved.

Theorem 1. The posterior distribution of θ 1 , θ 2  and θ 3  under the prior (10), 

is proper if N-2b- p+2>0  and N+2na-2b-2n+2> 0 , where N=nk  .

Proof. Under the prior (10), the joint posterior for θ 1 , θ 2  and θ 3  given y  is

π(θ 1,θ 2,θ 3∣y)

∝ θ
N-2b
2

2 (1+nθ 1)
- a

× exp{-
θ2(1+nθ 1)

1
n

2 ∑
k

i=1
(y i-Xiθ 3)

T
(I-

θ1
1+nθ 1

J )(y i-Xiθ 3) }.

  (11)

Now for i=1,…,k ,

(y i-Xiθ 3)
T
( I-

θ1
1+nθ1

J )(y i-Xiθ 3)≥(y i-Xiθ 3)
T
(I-

1
n
J )(y i-Xiθ3).

Thus

π(θ 1,θ 2,θ 3∣y) ≤ θ
N- 2b
2

2 (1+nθ 1)
- a

× exp{-
θ2(1+nθ 1)

1
n

2
[ ∑
k

i=1
(y i-Xiθ 3)

T
(I-

1
n
J)(y i-Xiθ 3)] }

≡ π'(θ 1,θ 2,θ 3∣y).
                                                                           (12)

Integrating with respect to θ 3  in (12), then
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   π'(θ 1,θ 2∣y) ∝ θ
N- 2b- p

2
2 (1+nθ 1)

- a-
p
2n exp {-

θ2(1+nθ 1)
1
n

2

× [ ∑
k

i=1
(y i-Xiθ 3̂)

T( I-
1
n
J)(y i-X iθ 3̂) ]},

    (13)

where θ 3̂= [∑
k

i=1
XTi (I-

1
n
J )Xi]

- 1[ ∑
k

i=1
XTi (I-

1
n
J )y i].  If N-2b- p+2>0 , 

and integrating with respect to θ 2  in (13), then

π'(θ 1∣y) ∝ (1+nθ 1)
-
N+2na-2b+2

2n .                  (14)

Therefore the marginal posterior (14) is proper if N+2na-2b+2-2n > 0 . This 

completes the proof. 

Remark 3. Using the similar method in Theorem 1, we can easily prove that 

the posterior distribution under Jeffreys' prior π 1  is proper.

Theorem 2. Under the general prior (10), the marginal posterior density of θ 1  

is given by

π(θ 1∣y) ∝ | ∑
k

i=1
XTi ( I-

θ1
1+nθ 1

J)Xi |
-
1
2 (1+nθ 1)

-
N+2na-2b+2

2n

× [ ∑
k

i=1
(y i-Xiθ 3̂( θ1))

T
(I-

θ1
1+nθ 1

J)(y i-Xiθ 3̂(θ 1))]
-
N-2b- p+2

2

and under Jeffrey's prior π 1 , the marginal posterior density of θ 1  is given by

π(θ 1∣y) ∝ (1+nθ 1)
-
k+2
2

× [ ∑
k

i=1
(y i-Xiθ 3̂( θ1))

T(I-
θ1

1+nθ 1
J)(y i-Xiθ 3̂( θ1))]

-
N
2 ,

where θ 3̂( θ1 )=[ ∑
k

i=1
X
T
i ( I-

θ1
1+nθ 1

J)Xi]
- 1
[ ∑
k

i=1
X
T
i ( I-

θ1
1+nθ 1

J)y i].  

The normalizing constant for the marginal density of θ 1  requires an one 

dimensional integration. Therefore we have the marginal posterior density of θ 1 , 

and so it is to compute the marginal moment of θ 1 .  In Section 4, we investigate 

the frequentist coverage probabilities for the reference priors π 2,π 3  and Jeffreys' 

prior π 1 , respectively.
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4. Numerical Studies and Discussion

We evaluate the frequentist coverage probability by investigating the credible 

interval of the marginal posteriors density of θ 1  under the noninformative prior π  

given in Section 3 for several configurations ( β, σ2α,σ
2),k,n  and Xi,i=1,…,k . 

That is to say, the frequentist coverage of a (1-α)th posterior quantile should 

be close to (1-α). This is done numerically. Table 1 gives numerical values of 

the frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for the our 

prior. The computation of these numerical values is based on the following 

algorithm for any fixed true ( β, σ2α,σ
2) , the design matrix Xi  and any 

prespecified probability value α . Here α  is 0.05 (0.95). Let θ
π
1 (α∣Y)   be the 

posterior α-quantile of θ 1  given Y . That is to say, F(θ
π
1 (α∣Y)∣Y)=α , where 

F(⋅∣Y)  is the marginal posterior distribution of θ 1 . Then the frequentist 

coverage probability of this one sided credible interval of θ 1  is

P ( β , σ2α, σ
2)( α;θ 1)= P ( β , σ2α, σ

2 )(0<θ 1≤θ
π
1 (α∣Y)).

The estimated P ( β , σ
2
α, σ

2
)( α;θ 1)  when α=0.05 (0.95) is shown in Table 1 for the 

trivariate case.

In particular, for fixed ( β, σ
2
α,σ

2
)  and Xi, we take 10,000 independent random 

samples of Y  from the model (1). Our simulation, we take β=(1,1,1)
T  without 

loss of generality. In the results of Table 1, the design matrixes are given by

X 1=X 2=X 3=
ꀌ

ꀘ

︳︳︳

ꀍ

ꀙ

︳︳︳

1 0 0
1 1 0
1 1 1

 and X 4=X 5=
ꀌ

ꀘ

︳︳︳

ꀍ

ꀙ

︳︳︳

1 0 1
0 1 0
1 1 1

.

For the cases presented in Table 1, we see that reference prior π 3  satisfying 

the second order matching criterion meet very well the target coverage 

probabilities. But although the two group reference prior π 2  satisfies the first 

order matching criterion, the prior has not good coverage probabilities. Thus we 

recommend to use the one-at-a-time reference prior π 3 .
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<Table 1> Frequentist Coverage Probabilities of 0.05 (0.95) Posterior Quantiles 

for θ 1  

σ 2   σ
2
α π 1           π 2           π 3

1   0.5

    1

    10

    20

    50

0.080(1.000)  0.073(1.000)  0.052(1.000)

0.089(0.995)  0.074(0.995)  0.052(1.000)

0.123(0.951)  0.077(0.931)  0.048(0.950)

0.131(0.955)  0.080(0.929)  0.048(0.945)

0.149(0.965)  0.086(0.934)  0.051(0.947)

In the linear mixed model, we have found a prior which is a second order 

matching prior and reference prior for the variance ratio. It turns out that the 

one-at-a-time reference prior satisfies the second order matching criterion. As 

illustrated in our numerical study, the one-at-a-time reference prior seems to be 

the best appropriate results than the other reference priors in the sense of 

asymptotic frequentist coverage property.
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