• Title/Summary/Keyword: Jacket matrix

Search Result 40, Processing Time 0.022 seconds

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

A Double Helix DNA Structure Based on Block Circulant Matrix (II) (블록순환 행렬에 의한 이중나선 DNA 구조 (II))

  • Park, Ju-Yong;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.229-233
    • /
    • 2016
  • In this paper, we present the four genetic nitrogenous bases of C, U(T), A, G to matrices and describe the structures from $4{\times}4$ RNA(ribose nucleic acid) to $8{\times}8$ DNA((deoxyribose nucleic acid) matrices. we analysis a deoxyribose nucleic acid (DNA) double helix based on the block circulant Hadamard-Jacket matrix (BCHJM). The orthogonal BCHJM is anti-symmetric pair complementary of the core DNA. The block circulant ribonucleic acid (RNA) repair damage reliability is better than the conventional double helix. In case of k=4 and N=1, the reliability of block circulant complementarity is 93.75%, and in case of k=4 and N=4, it is 98.44%. Therefore it improves 4.69% than conventional case of double helix.

On Fast M-Gold Hadamard Sequence Transform (고속 M-Gold-Hadamard 시퀀스 트랜스폼)

  • Lee, Mi-Sung;Lee, Moon-Ho;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.93-101
    • /
    • 2010
  • In this paper we generate Gold-sequence by using M-sequence which is made by two primitive polynomial of GF(2). Generally M-sequence is generated by linear feedback shift register code generator. Here we show that this matrix of appropriate permutation has Hadamard matrix property. This matrix proves that Gold-sequence through two M-sequence and additive matrix of one column has one of major properties of Hadamard matrix, orthogonal. and this matrix show another property that multiplication with one matrix and transpose matrix of this matrix have the result of unit matrix. Also M-sequence which is made by linear feedback shift register gets Hadamard matrix property mentioned above by adding matrices of one column and one row. And high-speed conversion is possible through L-matrix and the S-matrix.

A Study on Apparel Product Design Elements Applied to Quality Function Deployment -Focused on Middle-Aged and Aged Women's Formal Wear- (품질기능전개(QFD)를 이용한 의류제품 디자인 설계요소 연구 -중.노년층여성정장의 의류제품품질을 중심으로-)

  • Row, Young;Park, Jae-Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.10
    • /
    • pp.1509-1521
    • /
    • 2008
  • The subjects of this study were middle-aged women in their 40s$\sim$50s and older women aged 60 and over who were living in Seoul and Kyonggi-do, Korea. Through studying the participants' responses to the questions regarding the attributes of apparel quality in terms of the levels of satisfaction and importance, the target consumers' demand has been studied. And, they are applied to a QFD Matrix, to find out the relationship between the attributes of product quality and the guidelines of clothing design. For this study, apparel product quality is composed of five parameters: practicality, aesthetics, brand image, ease of care and fit. For the parameters of apparel product quality, the result of this study show that product improvements are needed in fit, aesthetics and practicality(in order of importance). The level of satisfaction(how satisfied consumer feels) was marked higher in brand image than that of importance(how important it is). To review demands for the apparel product attributes of formal suits for middle-aged and older women, the priority of these attributes through QFD Matrix that shows the relationship between the attributes and dress elements emphasized by designers has been examined. Material was the most important design element in designing formal suits. The shape of the pants was the second because the harmony between the jacket and the pants is important in formal suits. These were followed by trim and color tone of the jacket.

A MIMO LTE Precoding Codebook Based on Fast Diagonal Weighted Matrices (고속 대각 하중 행렬을 이용한 MIMO LTE 프리코딩 코드북)

  • Park, Ju-Yong;Peng, Bu Shi;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.14-26
    • /
    • 2012
  • In this paper, a fast diagonal-weighted Jacket matrices (DWJMs) is proposed to have the orthogonal architecture. We develop the successive DWJM to reduce the computational load while factorizing the large-order DWJMs into the low-order sparse matrices with the fast algorithms. The proposed DWJM is then applied to the precoding multiple-input and multiple output (MIMO) wireless communications because of its diagonal-weighted framework with element-wise inverse characteristics. Based on the properties of the DWJM, the DWJM can be used as alternative open loop cyclic delay diversity (CDD) precoding, which has recently become part of the cellular communications systems. Performance of the DWJM-based precoding system is verified for orthogonal space-time block code (OSTBC) MIMO LTE systems.

MIMO Channel Diagonalization: Linear Detection ZF, MMSE (MIMO 채널 대각화: 선형 검출 ZF, MMSE)

  • Yang, Jae Seung;Shin, Tae Chol;Lee, Moon Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Compared to the MIMO system using the spatial multiplexing methods and the MIMO system using the diversity scheme achieved a high rate, but the lower the diversity gain to improve the data transmission reliability should separate the spatial stream at the MIMO receiver. In this paper, we compared Channel capacity detection methods with the Lattice code, the 3-user interference channel and linear channel interference detection methods ZF (Zero Forcing) and MMSE (Minimum Mean Square Error) detection methods. The channel is a Diagonal channel. In other words, Diagonal channel is confirmed by the inverse matrix satisfies the properties of Jacket are element-wise inverse to $[H]_N[H]_N^{-1}=[I]_N$.

Application of ultra-high performance fiber reinforced concrete for retrofitting the damaged exterior reinforced concrete beam-column joints

  • Al-Osta, Mohammed A.;Khan, Muhammad I.;Bahraq, Ashraf A.;Xu, Shi-Yu
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.361-377
    • /
    • 2020
  • In the present research work, the effectiveness and the efficiency of a retrofitting approach using a layer of ultra-high performance fiber reinforced concrete (UHPFRC) jacket for damaged substandard exterior beam-column joints (BCJs) is experimentally investigated. The main objective of this study is to rehabilitate the already damaged BCJs to meet the serviceability requirements without compromising safety. According to the proposed strengthening technique, a chipped surface, lightly brushed with a dry condition was selected for making a successful bond between normal concrete substrate surface (NCSS) and UHPFRC. Then a fresh UHPFRC jacket with a thickness of 30 mm was cast around the damaged specimens. The entire test matrix was comprised of three 1/3 scale damaged exterior BCJs with a different column axial load (CAL). These specimens were repaired with UHPFRC and retested under monotonic loading. Based on the experimental results, repaired specimens showed an excellent performance in terms of their load-displacement response, maximum strength, displacement ductility, initial stiffness, secant stiffness and energy dissipation capacity when compared with the corresponding values registered when these specimens were tested in their virgin state. This rehabilitative intervention not only restored the strength, stiffness, ductility and energy dissipation capacity of severely damaged specimens but also improved their performance.

A Simple Toeplitz Channel Matrix Decomposition with Vectorization Technique for Large scaled MIMO System (벡터화 기술을 이용한 대규모 MIMO 시스템의 간단한 Toeplitz 채널 행렬 분해)

  • Park, Ju Yong;Hanif, Mohammad Abu;Kim, Jeong Su;Song, Sang Seob;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.21-29
    • /
    • 2014
  • Due to enormous number of user and limited memory space, the memory saving is become an important issue for big data service these days. In the large scaled multiple-input multiple-output (MIMO) system, the Teoplitz channel can play the significance rule to improve the performance as well as power efficiency. In this paper, we propose a Toeplitz channel decomposition based on matrix vectorization. Here we use Toeplitz matrix to the channel for large scaled MIMO system. And we show that the Toeplitz Jacket matrices are decomposed to Cooley-Tukey sparse matrices like fast Fourier transform (FFT).

Key Agreement Algorithms Based on Co-cyclic Hadamard Matrices (코사이클 Hadamard 행렬을 이용한 키 동의 알고리즘)

  • Choe, Chang-Hui;Kim, Jeong-Su;Lee, Moon-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.163-167
    • /
    • 2009
  • In this paper, we analyze key agreement algorithms based on co-cyclic Jacket matrices, and propose key agreement algorithms based on co-cyclic Hadamard matrices to fix the problem. The performance of our proposal is better than conventional one's and the construction of the matrices is very simple. Also time complexity of our proposal is proportional to the factor that determinees the size of the matrix, and the length of the key. So our proposal is fast and will be useful for the communcations of two or three users, especially for those have low computing power.

H filter design for offshore platforms via sampled-data measurements

  • Kazemy, Ali
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.187-194
    • /
    • 2018
  • This paper focuses on the $H_{\infty}$ filter design problem for offshore steel jacket platforms. Its objective is to design a full-order state observer for offshore platforms in presence of unknown disturbances. To make the method more practical, it is assumed that the measured variables are available at discrete-time instants with time-varying sampling time intervals. By modelling the sampling intervals as a bounded time-varying delay, the estimation error system is expressed as a time-delay system. As a result, the addressed problem can be transformed to the problem of stability of dynamic error between the system and the state estimator. Then, based on the Lyapunov-Krasovskii Functional (LKF), a stability criterion is obtained in the form of Linear Matrix Inequalities (LMIs). According to the stability criterion, a sufficient condition on designing the state estimator gain is obtained. In the end, the proposed method is applied to an offshore platform to show its effectiveness.