• Title/Summary/Keyword: JIA

Search Result 1,331, Processing Time 0.028 seconds

ON A CLASS OF COMPLETE NON-COMPACT GRADIENT YAMABE SOLITONS

  • Wu, Jia-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.851-863
    • /
    • 2018
  • We derive lower bounds of the scalar curvature on complete non-compact gradient Yamabe solitons under some integral curvature conditions. Based on this, we prove that potential functions of Yamabe solitons have at most quadratic growth for distance function. We also obtain a finite topological type property on complete shrinking gradient Yamabe solitons under suitable scalar curvature assumptions.

Face Detection and Extraction Based on Ellipse Clustering Method in YCbCr Space

  • Jia, Shi;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.833-840
    • /
    • 2010
  • In this paper a method for detecting and extracting the face from the image in YCbCr spaceis proposed. The face region is obtained from the complex original image by using the difference method and the face color information is taken from the reduced face region throughthe Ellipse clustering method. The experimental results showed that the proposed method can efficiently detect and extract the face from the original image under the general light intensity except for low luminance.

COMPOSITION OPERATORS FROM HARDY SPACES INTO α-BLOCH SPACES ON THE POLYDISK

  • SONGXIAO LI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.703-708
    • /
    • 2005
  • Let ${\varphi}(z)\;=\;({\varphi}_1(Z),{\cdots},{\varphi}_n(Z))$ be a holomorphic self­map of $\mathbb{D}^n$, where $\mathbb{D}^n$ is the unit polydisk of $\mathbb{C}^n$. The sufficient and necessary conditions for a composition operator to be bounded and compact from the Hardy space $H^2(\mathbb{D}^n)$ into $\alpha$-Bloch space $\beta^{\alpha}(\mathbb{D}^n)$ on the polydisk are given.

GLOBAL ASYMPTOTIC STABILITY FOR A DIFFUSION LOTKA-VOLTERRA COMPETITION SYSTEM WITH TIME DELAYS

  • Zhang, Jia-Fang;Zhang, Ping-An
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1255-1262
    • /
    • 2012
  • A type of delayed Lotka-Volterra competition reaction-diffusion system is considered. By constructing a new Lyapunov function, we prove that the unique positive steady-state solution is globally asymptotically stable when interspecies competition is weaker than intraspecies competition. Moreover, we show that the stability property does not depend on the diffusion coefficients and time delays.

STATIONARY PATTERNS FOR A PREDATOR-PREY MODEL WITH HOLLING TYPE III RESPONSE FUNCTION AND CROSS-DIFFUSION

  • Liu, Jia;Lin, Zhigui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.251-261
    • /
    • 2010
  • This paper deals with a predator-prey model with Holling type III response function and cross-diffusion subject to the homogeneous Neumann boundary condition. We first give a priori estimates (positive upper and lower bounds) of positive steady states. Then the non-existence and existence results of non-constant positive steady states are given as the cross-diffusion coefficient is varied, which means that stationary patterns arise from cross-diffusion.

ADDITIVITY OF LIE MAPS ON OPERATOR ALGEBRAS

  • Qian, Jia;Li, Pengtong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.271-279
    • /
    • 2007
  • Let A standard operator algebra which does not contain the identity operator, acting on a Hilbert space of dimension greater than one. If ${\Phi}$ is a bijective Lie map from A onto an arbitrary algebra, that is $${\phi}$$(AB-BA)=$${\phi}(A){\phi}(B)-{\phi}(B){\phi}(A)$$ for all A, B${\in}$A, then ${\phi}$ is additive. Also, if A contains the identity operator, then there exists a bijective Lie map of A which is not additive.

A GENERAL RICCI FLOW SYSTEM

  • Wu, Jia-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.253-292
    • /
    • 2018
  • In this paper, we introduce a general Ricci flow system, which is closely linked with the Ricci flow and the renormalization group flow, etc. We prove the short-time existence, the entropy functionals, the higher derivatives estimates and the compactness theorem for this general Ricci flow system on closed Riemannian manifolds. These basic results are useful tools to understand the singularities of this system.