Browse > Article
http://dx.doi.org/10.4134/JKMS.j170037

A GENERAL RICCI FLOW SYSTEM  

Wu, Jia-Yong (Department of Mathematics Shanghai Maritime University)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.2, 2018 , pp. 253-292 More about this Journal
Abstract
In this paper, we introduce a general Ricci flow system, which is closely linked with the Ricci flow and the renormalization group flow, etc. We prove the short-time existence, the entropy functionals, the higher derivatives estimates and the compactness theorem for this general Ricci flow system on closed Riemannian manifolds. These basic results are useful tools to understand the singularities of this system.
Keywords
Ricci flow; renormalization group flow; B-field; static Einstein vacuum equations; entropy; gradient estimates; compactness theorem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Chow, S. C. Chu, D. Glickenstein, C. Guentheretc, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci ow: techniques and applications. Part I, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, 2007.
2 B. Chow and D. Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004.
3 B. Chow, P. Lu, and L. Ni, Hamilton's Ricci flow, Lectures in Contemporary Mathematics 3, Science Press and Amer. Math. Soc., 2006.
4 D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983), no. 1, 157-162.   DOI
5 M. Feldman, T. Ilmanen, and L. Ni, Entropy and reduced distance for Ricci expanders, J. Geom. Anal. 15 (2005), no. 1, 49-62.   DOI
6 R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306.   DOI
7 R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995), no. 3, 545-572.   DOI
8 N. Hitchin, Lectures on special Lagrangian submanifolds, in Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), 151-182, AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., Providence, RI, 1999.
9 B. List, Evolution of an extended Ricci flow system, Comm. Anal. Geom. 16 (2008), no. 5, 1007-1048.   DOI
10 Y. Li, Eigenvalues and entropies under the harmonic-Ricci flow, Pacific J. Math. 267 (2014), no. 1, 141-184.   DOI
11 T. Oliynyk, V. Suneeta, and E. Woolgar, A gradient flow for worldsheet nonlinear sigma models, Nuclear Phys. B 739 (2006), no. 3, 441-458.   DOI
12 G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
13 W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), no. 1, 223-301.   DOI
14 M. Stern, B fields from a Luddite perspective, in Quantum theory and symmetries, 415-423, World Sci. Publ., Hackensack, NJ, 2004.
15 J. Streets, Regularity and expanding entropy for connection Ricci flow, J. Geom. Phys. 58 (2008), no. 7, 900-912.   DOI
16 J. Streets, Singularities of renormalization group flows, J. Geom. Phys. 59 (2009), no. 1, 8-16.   DOI
17 Y. Li, Generalized Ricci flow I: Higher-derivative estimates for compact manifolds, Anal. PDE 5 (2012), no. 4, 747-775.   DOI