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A GENERAL RICCI FLOW SYSTEM

Jia-Yong Wu

Abstract. In this paper, we introduce a general Ricci flow system, which

is closely linked with the Ricci flow and the renormalization group flow,

etc. We prove the short-time existence, the entropy functionals, the higher
derivatives estimates and the compactness theorem for this general Ricci

flow system on closed Riemannian manifolds. These basic results are
useful tools to understand the singularities of this system.

1. Introduction

Let (Mn, g) be a closed n-dimensional Riemannian manifold. Consider B
be a local 2-form defined up to the addition of an exact 2-form on M , and
H = dB denotes a well-defined 3-form on M . Then the B-fields can be intro-
duced, see [8, 15, 17]. Furthermore, let u be a smooth function on M , some-
times the function u is also called the Lapse function. We say that a family
(M, g(t), H(t), u(t)) is a solution to a general Ricci flow system (GRF system
for short) if

(1.1)
∂tg = −2Rc+ h/2 + 2αndu⊗ du
∂tH = ∆LBH and ∂tu = ∆u,

where Rc is the Ricci curvature of the manifold M , h a two-form, written in a
local coordinates as hij = gklgmnHikmHjln, αn a constant depending only on
n, ∆LB the usual Laplace-Beltrami operator on forms associated to g(x, t) and
∆ = gij∇i∇j .

The coupled geometric flow (1.1) is related to the Ricci flow [6] and the so-
called renormalization group flow [12]. Note that the idea of coupling the Ricci
flow with another flow also appeared in [9–11, 16]. In this paper, we mainly
discuss the short-time existence, the entropy functionals, the higher derivatives
estimates and the compactness theorem for this general Ricci flow system on
closed Riemannian manifolds. Many of our results obviously extend previous
results in [6, 11,16].
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If H ≡ 0 and u ≡ 0, the GRF system (1.1) reduces to the Hamilton’s Ricci
flow [6], which is an effective tool to solve the Poincaré and Geometrization
Conjectures.

The system (1.1) when function u identically equals to constant naturally
arises in physics, which can be interpreted as a certain nonlinear sigma model.
We regard the special case as the B-field flow. The B-field flow was studied
in [12], where they introduced an interesting functional, similar to Perelman’s
F-functional. Note that B-field flow was also interpreted as the connection
Ricci flow [16].

Also, the case H = 0 preserved by (1.1) was studied in [11] and the system
can be reduced to the static Einstein vacuum equations. A main motivation
to study (1.1) with H = 0 stems from its connection to general relativity.
An important issue in the numerical evolution of the Einstein equations is
the construction of good initial data sets which have to satisfy the so-called
constraint equations.

The structure of this paper is organized as follows. In Section 2, we prove the
short time existence of the GRF system (1.1). In Section 3, we give interesting
entropy formulas, similar to the Perelman’s entropy functional. As applications,
we prove the nonexistence of the nontrivial steady or expanding breathers for
the GRF system. In Section 4, we compute the evolution equations for many
geometric quantities and their derivatives along the GRF system. In Section
5, we obtain the Bernstein-Bando-Shi type derivative estimates for geometric
solutions of the GRF system. In Section 6, we prove the compactness theorems
for the GRF system, which is a useful tool to understand the singularities of
the GRF system.

The proofs in this paper will often involve local computations. Therefore,
we assume a coordinate system {x1, . . . , xn} is fixed in a neighborhood of ev-
ery point x ∈ M . In order to facilitate the computations, we often implicitly
assume that {x1, . . . , xn} are normal coordinates. We use the standard short-

hand: Given a real-valued function f on M , the notation fi stands for ∂f
∂xi , the

notation fij refers to the Hessian of f applied to ∂
∂xi and ∂

∂xj , and similar for
higher derivatives. The notation Rij refers to the corresponding components

of the Ricci tensor, i.e., Rij = Rc( ∂
∂xi ,

∂
∂xj ). For a real-valued function u on

M , uiuj = du⊗ du( ∂
∂xi ,

∂
∂xj ). The subscript t designates the differentiation in

t ∈ [0, T ). Throughout this paper we use the Einstein summation convention,
meaning that we sum over a repeated lower and upper index from 1 to n. In
normal coordinates, the summation can be over two lower indices. We also
write A ∗B for a linear combination of contractions of components of the two
tensors A and B when the precise form and number of these terms is irrelevant
for the computation.

Acknowledgements. This work was initiated during the author’s study at
ECNU in 2009. The first version of the work was finished in 2010. For some
reason, the author didn’t submit it at that time. The author would like to thank
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2. Short time existence

In this section, we will use the DeTurck’s trick to prove short time existence
and uniqueness of the GRF system (1.1) on closed manifolds.

Theorem 2.1. Let M be a closed n-dimensional manifold and the initial data
(g̃, H̃, ũ) be given. Then the initial value problem

(2.1)
∂tgij = −2Rij + 1/2hij + 2αnuiuj

∂tH = ∆LBH and ∂tu = ∆u

with the initial data (g(x, 0), H(x, 0), u(x, 0)) = (g̃, H̃, ũ) has a unique smooth
solution on some time interval [0, T ), where hij = gklgmnHikmHjln.

Since the second and third terms on the right hand side of the first equation
of (2.1) have not any second-order expression on the metric g, they do not
affect the principal symbol. So the principal symbol of (2.1) is the same as the
principal symbol of the Ricci operator. Therefore the considerations used by
R. Hamilton [6] concerning the Ricci flow are also true for the system (2.1).

In the following, we shall find a strongly parabolic system which is equivalent
to the system (2.1) by the application of a diffeomorphism. This is referred to
as DeTurck’s trick [4]. We shall employ Shi’s method [14] and first calculate
evolution equations for solutions pulled back by such a diffeomorphism.

Let V ∈ X (M × [0, T )) be a smooth time dependent vector field and denote
the induced 1-parameter family of diffeomorphisms by ϕt. Then the diffeomor-
phisms satisfy at every x ∈M the following ordinary differential equation:

d

dt
ϕt(x) = V (ϕt(x)) with ϕ0(x) = x.

Lemma 2.2. Suppose (ḡ, H̄, ū) is a solution to the system (2.1) on closed man-
ifolds on [0, T ). Let ϕt : M →M be the 1-parameter family of diffeomorphisms
generated by V . Then the pullbacks satisfy the system

(2.2)
∂tgij = −2Rij + 1/2hij + 2αnuiuj +∇iVj +∇jVi
∂tH = ∆LBH − d〈H,V 〉 and ∂tu = ∆u+ du(V )

with the same initial values as (ḡ, H̄, ū) on M × [0, T ), where {Vi} is the asso-
ciated 1-form to V .

Proof. Denote by {yα}α=1,...,n the coordinates where ḡ, H̄ and ū are repre-
sented by ḡαβ , H̄αβγ and ū. Define new coordinates by xi := (y ◦ ϕ)i for
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i = 1, . . . , n. We follow the same calculation of [14] without any unchanged
except the following extra two terms of the system in the new coordinates {xi}

ϕ∗t
(
h̄αβ

)
=
∂yα

∂xi
∂yβ

∂xj
h̄αβ = hij and ϕ∗t (ūαūβ)ij =

∂yα

∂xi
∂ū

∂yα
∂yβ

∂xj
∂ū

∂yβ
= uiuj .

Meanwhile the evolution of H with respect to new coordinates is

∂tH = ϕ∗t
(
∂tH̄ + LV̄ H̄

)
= ϕ∗t

(
∆̄LBH̄ + LV̄ H̄

)
= ϕ∗t

(
∆̄LBH̄ − d〈H̄, V̄ 〉

)
= ∆LBH − d〈H,V 〉,

where we used H is a closed 3-form. In the end, the evolution of u satisfies

∂tu(x, t) = ∂tū(y, t) = ūt +
∂ū

∂yα
∂ty

α = ∆̄ū+
∂ū

∂yα
∂ty

α.

Note that

∆̄ū = ḡαβ∇̄α∇̄β ū =
∂yα

∂xi
∂yβ

∂xj
gij

∂xi

∂yα
∂xj

∂yβ
∇i∇ju = ∆u

and

∂ty
α =

(
d

dt
ϕt(x)

)α
= (V ϕt(x))

α
= (Dϕt(V ))

α
=
∂yα

∂xk
V k.

Therefore

∂tu(x, t) = ∆u+
∂u

∂xk
V k.

We also notice that the initial data remain the same under this coordinate
change since ϕ0 = id. Therefore we finish the proof of the lemma. �

If we choose a suitable vector field V , then the system (2.2) is strictly par-
abolic.

Lemma 2.3. Let V i = gmn(Γimn − Γ̃imn). Then the system (2.2) is strictly

parabolic on M × [0, T ), where Γ̃imn denotes the connection with respect to the
initial metric g̃, which is time-independent.

Proof. To check that the system is strictly parabolic, we rewrite the equations
such that all derivatives are with respect to the (fixed) initial metric g̃ and
examine the leading order terms in coordinates. Here we use the following
identity

Γimn − Γ̃imn = 1/2gil(∇̃mgnl + ∇̃ngml − ∇̃lgmn)

to replace Christoffel symbols of g by derivatives ∇̃g and work in normal co-
ordinates for g̃ such that Γ̃imn = 0 at the base point. From Lemma 2.1 of [14],
we have

∂tgij = gab∇̃a∇̃bgij−gabgikg̃klR̃jalb−gabgjkg̃klR̃ialb+1/2gklgmnHikmHjln

(2.3)

+2αnuiuj + 1/2gabgkl
(
∇̃igka∇̃jglb+2∇̃agjk∇̃lgib−2∇̃agjk∇̃bgil
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−2∇̃jgka∇̃bgil−2∇̃igka∇̃bgjl
)
.

Similarly, by the Bochler formula, the equation for 3-form H is roughly
computed as follows (In fact we only need to understand the second-order
derivative of H):

(2.4)

∂tHijk = ∆LBH − d〈H,V 〉
= ∆Hijk + (Rm ∗H)ijk + (Rm ∗ ∇H)ijk

= gab∇a∇bHijk + (Rm ∗H)ijk + (Rm ∗ ∇H)ijk

= gab∇̃a∇̃bHijk − gabΓpabHpjk − gabΓpabHipk − gabΓpabHijp

+ (Rm ∗H)ijk + (Rm ∗ ∇H)ijk.

The evolution equation of u is given by

(2.5)
∂tu = ∆u+ du(V ) = gab∇a∇bu+ upV

p

= gab∇̃a∇̃bu− gabΓpabup + up · gab(Γpab − Γ̃pab) = gab∇̃a∇̃bu,

where we used Γ̃pab = 0. The principal symbol of system (2.2) in these coor-
dinates is given by the coefficient matrices of the second derivatives of g, H
and u. By (2.3), (2.4) and (2.5), we conclude that the system (2.2) is strictly
parabolic. �

Now we can finish the proof of Theorem 2.1.

Proof of Theorem 2.1. From Lemma 2.3, we know that the system (2.2) is
strictly parabolic. It is a standard result that for any smooth initial data
(g̃, H̃, ũ), there exists ε > 0 depending on the initial data such that a unique
smooth solution (g(t), H(t), u(t)) to the system (2.2) will exist for a short time
0 ≤ t < ε.

We observe that 1-parameter family of diffeomorphisms φt, which is defined
by

(2.6)
d

dt
φt(x) = −V (φt(x)) with φ0(x) = x.

Note that this 1-parameter family of diffeomorphisms can be seen as the inverse
of ϕt. We claim that φt exists as long as the solution of (2.2) exists. Because
M is compact, it follows from Lemma 3.15 of [2].

In the end, from Lemma 2.2 we have ḡ := φ∗t g = (ϕ−1
t )∗g, H̄ := φ∗tH =

(ϕ−1
t )∗H and ū := φ∗tu = (ϕ−1

t )∗u is a solution of the system (2.1).
To address the uniqueness, we follow the ideas relating harmonic maps to

the GRF system. The basic idea is to write the ODE for φt given in (2.6) in
terms of the metric ḡ. We can rewrite the solution to (2.6) as the harmonic
map heat flow

(2.7) ∂tφt = ∆ḡ(t),g̃ φt,
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where g̃ is a fixed background metric on M . We refer the reader to Lemma
3.18 of [2] for the detailed discussions.

We now prove the uniqueness of the solution to (2.1) with the same initial
data. Let (ḡ1(t), H̄1(t), ū1(t)) and (ḡ2(t), H̄2(t), ū2(t)) denote two solutions
to (2.1) on some time interval. Let φi(t) denote the solution to (2.7) with
respect to ḡi, which exists because (2.7) is strictly parabolic on the underlying
manifold is compact. Note that gi(t) = (φ−1

t )∗ḡi(t), Hi(t) = (φ−1
t )∗H̄i(t)

and ui(t) = (φ−1
t )∗ūi(t) is a solution to (2.2). Since (g1(0), H1(0), u1(0)) =

(g2(0), H2(0), u2(0)) and solutions to (2.2) are unique, (g1(t), H1(t), u1(t)) =
(g2(t), H2(t), u2(t)) as long as they exist. But both (φ1)t and (φ2)t are solutions
of (2.6) generated by the same vector field

V i = gmn(Γimn − Γ̃imn).

Hence (φ1)t = (φ2)t. This implies ḡ1(t) = (φ1)∗t g1(t) = (φ2)∗t g2(t) = ḡ2(t),
H̄1(t) = (φ1)∗tH1(t) = (φ2)∗tH2(t) = H̄2(t) and ū1(t) = (φ1)∗tu1(t) = (φ2)∗tu2(t)
= ū2(t) and hence the uniqueness follows. �

3. Energy and monotonicity

In this section, we will generalize some results of Perelman’s F-functional
under the Ricci flow to the GRF system case.

3.1. Entropy and the gradient flow

Definition 3.1. A solution (g(t), H(t), u(t)) to system (1.1) on Mn is called a
GRF system soliton, if it varies only along a 1-parameter family of diffeomor-
phisms or by scaling. Therefore it satisfies

∂tg(t) = LX(t)g(t) + c(t)g(t)

∂tH(t) = LX(t)H(t) and ∂tu(t) = LX(t)u(t),

where X ∈ X (M × [0, T )) is the generator of the diffeomorphisms and c :
[0, T ) → R is the scaling factor, depending on time only. If X = ∇h is the
gradient of a smooth function h, the soliton is called a gradient soliton. We
say that the soliton is shrinking, steady or expanding, if c < 0, c = 0 or c > 0,
respectively.

Definition 3.2. Let M be a closed n-dimensional manifold and (g(t), H(t),
u(t)) be given as the system (1.1). Following the idea of Perelman, the entropy
of the system (1.1) is defined as follows

F(g(t), H(t), u(t), f(t)) :=

∫
M

(
R+ |∇f |2 − 1/12|H|2 − αn|du|2

)
wdµ

restricted to function w satisfying
∫
M
wdµ = 1 along this system, where f is

defined implicity by w = e−f .
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Suppose w satisfies the conjugate heat equation

(3.1) wt = −∆w +Rw − 1/4|H|2w − αn|du|2w.

It follows then that d
dt

∫
M
wdµ = 0 and moreover f satisfies

(3.2) ∂tf = −∆f + |∇f |2 −R+ 1/4|H|2 + αn|du|2.

Theorem 3.3. Suppose M is a closed n-dimensional manifold. Let (g(t), H(t),
u(t)) be a solution to the system (1.1) and f be the solution of (3.2). Then
(3.3)
d

dt
F = 2

∫
M

∣∣∣Rij − 1/4HikmHj
km − αnuiuj + fij

∣∣∣2 e−fdµ
+

1

2

∫
M

∣∣(d∗H)ij−Hkij∇kf
∣∣2 e−fdµ+2αn

∫
M

|∆u−du(∇f)|2 e−fdµ,

where (d∗H)ij = −∇kHkij. In particular this entropy is non-decreasing. Equal-
ity holds if and only if the solution is a steady gradient soliton. In this case
(g,H, u)(t) satisfies at all times t:

Rij − 1/4HikmHj
km − αnuiuj + fij = 0,

(d∗H)ij−Hkij∇kf = 0 and ∆u−du(∇f) = 0.

Theorem 3.3 is still true on complete manifolds as long as the integration by
parts can be justified. To prove Theorem 3.3, we start with the following two
lemmas.

Lemma 3.4. Given (Mn, g) a manifold and H a closed three-form on M , then

(1) ∇ihij = 1
6∇j |H|

2 + (d∗H)mnHjmn.

(2) ∇j∇ihij = 1
3 〈∆LBH,H〉+ 1

6∆|H|2 + |d∗H|2.

Proof. We refer the reader to Lemma A.4 of [16] for detailed discussions. �

Lemma 3.5. Let (g,H, u) be a solution to system (1.1) and let f be a solution
to the equation (3.2). Define V := 2∆f − |∇f |2 + R − 1/12|H|2 − αn|du|2.
Then

(3.4)
(∂t + ∆)V = 2 |Rij−1/4hij−αnuiuj+fij |2 +1/2

∣∣(d∗H)ij−Hkij∇kf
∣∣2

+ 2αn |∆u− du(∇f)|2 + 2 〈∇V,∇f〉 .

Proof. The proof is straightforward by direct computation. First, we have

(∂t + ∆)2∆f

= 2 〈2Rij−1/2hij−2αnuiuj , fij〉−2
(
1/2∇ihij − 1/4∇j |H|2

)
∇jf

+ 2∆
(
−∆f+|∇f |2−R+1/4|H|2+αn|du|2

)
−4αn∆u·du(∇f)+2∆∆f

= 〈4Rij−hij−4αnuiuj , fij〉+2∆|∇f |2−2∆R+1/2∆|H|2+2αn∆|du|2

+
〈
1/2∇j |H|2 −∇ihij ,∇jf

〉
−4αn∆u·du(∇f).
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Second,

(∂t + ∆)(−2|∇f |2) = 2
〈
∇(∆f−|∇f |2+R−1/4|H|2−αn|du|2),∇f

〉
+ 〈1/2hij+2αnuiuj−2Rij , fifj〉−∆|∇f |2.

Third,

(∂t + ∆)R = 2∆R+ 2|Rij |2 − 1/2∆|H|2 + 1/2∇j∇ihij − 1/2〈Rij , hij〉
− 2αn∆|du|2 + 2αn∇j∇i(uiuj)− 2αnRijuiuj .

Fourth,

(∂t + ∆)(−1/12|H|2)

= −1/12[〈6Rij−3/2hij−6αnuiuj , hij〉+2〈Ht, H〉+∆|H|2]

= 〈1/8hij+αn/2uiuj−1/2Rij , hij〉−1/6〈∆LBH,H〉−1/12∆|H|2.

For the last term of V , we have

(∂t+∆)(−αn|du|2)

= −αn〈2Rij−1/2hij−2αnuiuj , uiuj〉−2αn〈∇u,∇∆u〉−αn∆|du|2

= −2αnRijuiuju+αn/2hijuiuj+2α2
n|du|4−2αn〈∇u,∇∆u〉−αn∆|du|2.

Combining the above five calculations gives

(3.5)

(∂t + ∆)V = ∆|∇f |2−1/12∆|H|2−1/6〈∆LBH,H〉+1/2∇j∇ihij
+
〈
1/2∇j |H|2 −∇ihij ,∇jf

〉
+ 〈1/2hij−2Rij , fifj〉

+ 2 |Rij − 1/4hij + fij |2−2|fij |2

+ 2
〈
∇
(
∆f−|∇f |2+R−1/4|H|2−αn|du|2

)
,∇f

〉
− 4αn 〈uiuj , fij〉−4αnRijuiuj+αnhijuiuj+2α2

n|du|4

− 4αn∆u·du(∇f)+2αn|du(∇f)|2

+ 2αn∇j∇i(uiuj)−2αn〈∇u,∇∆u〉−αn∆|du|2.

Note that

2|Rij−1/4hij+fij |2−4αn〈uiuj , fij〉−4αnRijuiuj+αnhijuiuj+2α2
n|du|4

= 2 |Rij − 1/4hij − αnuiuj + fij |2 ,
2αn∇j∇i(∂iu∂ju)− 2αn〈∇u,∇∆u〉 − αn∆|du|2 = 2αn(∆u)2

and

∆|∇f |2−2|fij |2−2〈Rij , fifj〉 = 2〈∇∆f,∇f〉.
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Hence (3.5) reduces to

(3.6)

(∂t + ∆)V=− 1/12∆|H|2−1/6〈∆LBH,H〉+1/2∇j∇ihij
+〈1/2∇j |H|2 −∇ihij ,∇jf〉+〈1/2hij , fifj〉

+2 |Rij − 1/4hij − αnuiuj + fij |2 +2 〈∇V,∇f〉

−1/3〈∇|H|2,∇f〉+ 2αn |∆u− du(∇f)|2 .
Now using Lemma 3.4 we know that

−1/12∆|H|2 − 1/6〈∆LBH,H〉+ 1/2∇j∇ihij = 1/2|d∗H|2

and 〈
1/2∇j |H|2 −∇ihij ,∇jf

〉
= 1/3

〈
∇|H|2,∇f

〉
−
〈
(d∗H)ij , Hkij∇kf

〉
.

Substituting the above two equalities into (3.6) gives (3.4). �

Now we can give the proof of Theorem 3.3.

Proof of Theorem 3.3. Since w∇f = −∇w, then

(∂t + ∆)(V w) = (∂t + ∆)V ·w + V ·(∂t + ∆)w+2〈∇V,∇w〉

= 2 |Rij−1/4hij−αnuiuj+fij |2w+1/2
∣∣(d∗H)ij−Hkij∇kf

∣∣2 w
+2αn |∆u− du(∇f)|2 w + V · (∂t + ∆)w,

where we used Lemma 3.5. Therefore
(3.7)
d

dt

∫
M

(V w)dµ =

∫
M

d

dt
(V w) dµ+

∫
M

(V w) ·
[
−R+1/4|H|2+αn|du|2

]
dµ

= 2

∫
M

[
|Rij−1/4hij−αnuiuj+fij |2+αn|∆u−du(∇f)|2

]
wdµ

+ 1/2

∫
M

∣∣(d∗H)ij−Hkij∇kf
∣∣2wdµ+

∫
M

V · (∂t+∆)wdµ

+

∫
M

V ·
[
−Rw + 1/4|H|2w + αn|du|2w

]
dµ.

Since w satisfies (3.1), the theorem follows from (3.7). �

Similar to Ricci flow, we can also consider the following system

(3.8)
∂tgij = −2Rij + 1/2hij + 2αnuiuj − 2∇i∇jf
∂tH = ∆LBH − d〈H,∇f〉 and ∂tu = ∆u− du(∇f),

where the restricted function f satisfies the following conjugate heat-type equa-
tion

(3.9) ∂tf = −∆f −R+ 1/4|H|2 + αn|du|2.

It follows that d
dt

∫
M
e−fdµ = 0. From this, we can easily obtain the same

monotonicity formula (3.3) for the modified GRF system (3.8) coupled with
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(3.9). More importantly, (twice) positive gradient flow of the functional F(g(t),
H(t), u(t), f(t)) is (3.8) coupled with (3.9).

Below we will see that the GRF system (1.1) coupled with (3.2) is equivalent
to the modified GRF system (3.8) coupled with (3.9) by diffeomorphism.

Proposition 3.6. Let (ḡ(t), H̄(t), ū(t), f̄(t)) be a solution of the modified GRF
system (3.8) coupled with (3.9) on [0, T ]. We define a 1-parameter family of
diffeomorphisms Ψ(t) : M →M by

(3.10)
d

dt
Ψ(t) = ∇ḡ(t)f̄(t) with Ψ(t) = idM .

Then the pull back metric g(t) = Ψ(t)∗ḡ(t), the pull back 3-form H(t) =
Ψ(t)∗H̄(t), the pull back u(t) = Ψ(t)∗ū(t) and the dilation f(t) = f̄(t) ◦ Ψ(t)
satisfy the GRF system (1.1) coupled with (3.2).

Proof. By Lemma 3.15 of [2] the system of (3.10) is always solvable. Now we
compute

∂tg = Ψ(t)∗(∂tḡ) + Ψ(t)∗
(
L∇ḡ f̄ ḡ

)
= Ψ(t)∗

(
−2Rc(ḡ) + 1/2h̄ij + 2αnūiūj

)
= −2Rij + 1/2hij + 2αnuiuj .

Since H is a closed 3-form, we also have

∂tH = Ψ(t)∗
(
∂tH̄ + L∇ḡ f̄ H̄

)
= Ψ(t)∗

(
∆̄LBH̄ − d〈H̄,∇ḡ f̄〉+ L∇ḡ f̄ H̄

)
= Ψ(t)∗

(
∆̄LBH̄

)
= ∆LBH.

To obtain the formula for ∂u
∂t , we compute

∂tu = Ψ(t)∗
(
∂tū+ L∇ḡ f̄ ū

)
= Ψ(t)∗

(
∆̄ū− dū(∇f̄) + L∇ḡ f̄ ū

)
= ∆u.

In the end,

∂tf = ∂t(f̄ ◦Ψ) = ∂tf̄ ◦Ψ +
〈
(∇̄f̄) ◦Ψ, ∂tΨ

〉
g̃

=
(
−∆̄f̄ − R̄+ 1/4|H̄|2g̃ + αn|dū|2g̃

)
◦Ψ +

∣∣(∇̄f̄) ◦Ψ
∣∣2
g̃

= −∆f −R+ 1/4|H|2 + αn|du|2 + |∇f |2. �

From the above property, we see that the system (1.1) coupled with (3.2) is
a gradient-like flow. In other words, the system (1.1) is not a gradient flow of
a functional on the space of smooth metrics on a manifold with respect to the
standard L2-inner product, but its modified system (3.8) coupled with (3.9) is
a gradient flow. This phenomenon also appears in the Ricci flow, found by G.
Perelman [13].
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3.2. Expanding entropy

It is worth noting that, due to the lack of scale-invariance of the evolution of
g, the obvious generalization of the Perelman’s shrinking entropy does not gen-
eralize to the our case. However, the Feldman-Ilmanen-Ni expanding entropy
[5] can be extended to the case of our system. In particular we define

W+(g,H, u, f, τ) :=

∫
M

[
τ
(
R+ |∇f |2 − 1/12|H|2 − αn|du|2

)
− f+ + n

]
wdµ

restricted to function w satisfying
∫
M
wdµ = 1 along the GRF system (1.1),

where τ := t − T > 0 and f+ is defined by w = e−f+

(4πτ)n/2 . Suppose w satisfies

the equation

wt = −∆w +Rw − 1/4|H|2w − αn|du|2w.
It follows then that d

dt

∫
M
wdµ = 0 and moreover f+ satisfies

(3.11) ∂tf+ = −∆f+ + |∇f+|2 −R+ 1/4|H|2 + αn|du|2 −
n

2(t− T )
.

Theorem 3.7. Let (g(t), H(t), u(t)) be a solution to the system (1.1) and f+

be the solution of (3.11). Then
(3.12)

d

dt
W+ = 2τ

∫
M

∣∣∣∣Rij−1

4
HikmHj

km−αnuiuj+(f+)ij+
gij

2(t−T )

∣∣∣∣2 e−f+

(4πτ)n/2
dµ

+
τ

2

∫
M

∣∣(d∗H)ij −Hkij∇kf+

∣∣2 e−f+

(4πτ)n/2
dµ

+ 2αnτ

∫
M

|∆u− du(∇f+)|2 e−f+

(4πτ)n/2
dµ+

1

6

∫
M

|H|2 e−f+

(4πτ)n/2
dµ,

where (d∗H)ij = −∇kHkij. In particular this expanding entropy is non-decreas-
ing. Equality holds if and only if the solution is an expanding gradient soliton
with H ≡ 0. In this case (g,H, u)(t) satisfies at all times t:

Rij − αnuiuj + (f+)ij +
gij

2(t− T )
= 0,

∆u− du(∇f+) = 0 and H ≡ 0.

Proof. We assume τ = t. Define V+ := 2∆f+−|∇f+|2 +R− 1
12 |H|

2−αn|du|2.
Let W := tV+ − f+ + n. Note that Lemma 3.5 still holds if f is replaced by
f+. Hence

(∂t + ∆)W

= V++2t |Rij−1/4hij−αnuiuj+(f+)ij |2 +t/2
∣∣(d∗H)ij−Hkij∇kf+

∣∣2
+ 2αnt |∆u− du(∇f+)|2 + 2t 〈∇V+,∇f+〉

− |∇f+|2 +R− 1/4|H|2 − αn|du|2 +
n

2t
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= 2∆f+ + 2R− 1/3|H|2 − 2αn|du|2 +
n

2t
+ 2 〈∇W,∇f+〉

+ 2t|Rij−1/4hij−αnuiuj+(f+)ij |2+t/2
∣∣(d∗H)ij−Hkij∇kf+

∣∣2
+ 2αnt |∆u− du(∇f+)|2

= 2t
∣∣∣Rij−1/4hij−αnuiuj+(f+)ij+

gij
2t

∣∣∣2 +
t

2

∣∣(d∗H)ij−Hkij∇kf+

∣∣2
+ 2αnt |∆u− du(∇f+)|2 +1/6|H|2+2 〈∇W,∇f+〉 .

If we let v+ :=
[
τ
(
2∆f+ − |∇f+|2 +R− 1

12 |H|
2 − αn|du|2

)
− f+ + n

]
w, then

(∂t + ∆)v+

= (∂t + ∆)(Ww)

= w(∂t+∆)W+W (∂t+∆)w+2 〈∇W,∇w〉

= 2t
∣∣∣Rij−1/4hij−αnuiuj+(f+)ij+

gij
2t

∣∣∣2w+
t

2

∣∣(d∗H)ij−Hkij∇kf+

∣∣2w
+ 2αnt |∆u−du(∇f+)|2 w+1/6|H|2w+Rv+−1/4|H|2v+−αn|du|2v+.

In the end, Theorem 3.7 follows by the above equality and the relation

d

dt
W+ =

∫
M

(
∂t + ∆−R+ 1/4|H|2 + αn|du|2

)
v+dµ.

�

From the definition of W+, we see that W+ has the following property:

Proposition 3.8. If ϕ : M →M is a diffeomorphism and c > 0 is a constant,
then we have

(1) W+(ϕ∗g, ϕ∗H,ϕ∗u, ϕ∗f, τ) =W+(g,H, u, f, τ).
(2) W+(cg,H, u, f, cτ) =W+(g,H, u, f, τ).

3.3. Steady and expanding breathers

Definition 3.9. A solution (g(t), H(t), u(t)) to the system (1.1) on a manifold
Mn is called a breather if there exist times t1 < t2, a constant c > 0 and a
diffeomorphism ϕ : M →M such that g(t2) = cϕ∗g(t1), H(t2) = cϕ∗H(t1) and
u(t2) = cϕ∗u(t1). When c < 1, c = 1 or c > 1, we call (g,H, u)(t) a shrinking,
steady or expanding breather, respectively.

The soliton is a special of the breather. If we consider the GRF system
as a dynamical system on the space of M(M) ×

∧3
(M) × C∞(M) modulo

diffeomorphisms and homotheties, the breathers correspond to the periodic
orbits whereas the solitons correspond to the fixed points. Since the GRF
system is a heat-type system, we expect that there are no periodic orbits except
fixed points. In the following we will confirm it for the steady or expanding
case.

To study the steady breather, we introduce the λ-functional, which is similar
to the Ricci flow case.
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Definition 3.10.

λ(g,H, u) := inf

{
F (g(t), H(t), u(t), f(t))

∣∣∣f ∈ C∞(M),

∫
M

e−fdµ = 1

}
.

Taking v = e−f/2, we have

(3.13) λ(g,H, u) = inf

{
G (g(t), H(t), u(t), v(t))

∣∣∣ ∫
M

v2dµ = 1, v > 0

}
,

where

G (g(t), H(t), u(t), v(t)) :=

∫
M

(
4|∇v|2 +Rv2 − 1/12|H|2v2 − αn|du|2v2

)
dµ.

It is easy to see that the Euler-Lagrange equation for (3.13) is

Lv := −4∆v +Rv − 1/12|H|2v − αn|du|2v = λ(g,H, u)v.

Meanwhile we have the following existence and regularity of minimizer of G.

Lemma 3.11. The inf in the definition of λ(g,H, u) is attained by a unique
positive and smooth minimizer v0. Moreover,

(1) the minimum value λ(g,H, u) of G is equal to λ1(g,H, u), where λ1(g,
H, u) is the lowest eigenvalue of the operator −4∆ + R − 1/12|H|2 −
αn|du|2, and

(2) v0 is the unique positive eigenfunction of

−4∆v0 +Rv0 − 1/12|H|2v0 − αn|du|2v0 = λ(g,H, u)v0

with L2-norm equal to 1.

Proof. The proof involves the Sobolev embedding theorem and the standard
regularity theory for the second-order linear elliptic equations, similar to the
Ricci flow case. See Lemma 5.22 of Chapter 5 in [1] for detailed discussions. �

Remark 3.12. In Lemma 3.11, (2) can be stated that: The minimizer f0 =
−2 log v0 of F(g(t), H(t), u(t), ·) is unique, C∞, and a solution to

λ(g,H, u) = 2∆f0 − |∇f0|2 +R− 1/12|H|2 − αn|du|2.

We summarize the properties of the functional λ on closed manifolds.

Proposition 3.13. (1) (Bounds for λ) Let λ be defined as above.

Rmin − 1/12|H|2max − αn|du|2max ≤ λ(g,H, u) ≤
∫
M
Rdµ

Vol(M)
.

(2) (Diffeomorphism invariance) If ϕ : M →M is a diffeomorphism, then

λ(ϕ∗g, ϕ∗H,ϕ∗u) = λ(g,H, u).

(3) (Existence of a smooth minimizer) There exists a minimizer f ∈C∞(M)
with

∫
M
e−fdµ = 1 such that λ(g,H, u) = F(g,H, u, f).

(4) (Scaling) λ(cg,H, u) = c−1λ(g,H, u).

In the following we claim that λ(g,H, u) is also a monotonic quantity.
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Proposition 3.14. If (g(·), H(·), u(·)) is a solution to the GRF system (1.1),
then λ(g(t), H(t), u(t)) is non-decreasing in time.

Proof. Given t0 ∈ [0, T ], let f0 be the minimizer of F(g(t), H(t), u(t), f(t)) at
t0. Then λ(g(t0), H(t0), u(t0)) = F(g(t0), H(t0), u(t0), f(t0)). Let f solve the
backwards heat-type equation

∂tf = −∆f + |∇f |2 −R+ 1/4|H|2 + αn|du|2 with f(t0) = f0

on the time interval [0, t0]. Then d
dtF(g(t), H(t), u(t), f(t)) ≥ 0 for all t ≤ t0.

Also the backwards heat-type equation preserves the constraint
∫
M
e−fdµ = 1.

So λ(g(t), H(t), u(t)) ≤ F(g(t), H(t), u(t), f(t)) for t ≤ t0. Thus

λ(g(t), H(t), u(t)) ≤ F(g(t), H(t), u(t), f(t))

≤ F(g(t0), H(t0), u(t0), f(t0)) = λ(g(t0), H(t0), u(t0)).

Hence λ(g(t), H(t), u(t)) is non-decreasing in time. �

As an application of the functional λ we prove that:

Theorem 3.15. Let (g(t), H(t), u(t)) to be a solution to the GRF system
(1.1) on a closed manifold Mn. If there exist t1 < t2 with λ(g(t1), H(t1),
u(t1)) = λ(g(t2), H(t2), u(t2)) (i.e., the solution is a steady breather), then
(g(t), H(t), u(t)) is a steady gradient GRF system soliton.

Proof. Suppose there exist t1 < t2 with λ(g(t1), H(t1), u(t1)) = λ(g(t2), H(t2),
u(t2)). Let f2 be the minimizer for F at t2, so that F(g(t2), H(t2), u(t2)) =
λ(g(t2), H(t2), u(t2)). Take f(t) be to the solution to (3.2) on [t1, t2] with the
initial data f(t2) = f2. By (3.3) and the definition of λ, we have

λ(g(t1), H(t1), u(t1)) ≤ F(g(t), H(t), u(t), f(t))

≤ F(g(t2), H(t2), u(t2), f(t2))

= λ(g(t2), H(t2), u(t2))

for t∈[t1, t2]. Since λ(g(t1), H(t1), u(t1)) = λ(g(t2), H(t2), u(t2)) and λ(g(t),
H(t), u(t)) is monotone, then F(g(t), H(t), u(t), f(t)) = λ(g(t), H(t), u(t)) ≡
const for t ∈ [t1, t2]. Therefore, by (3.3), we have

Rij − 1/4HikmHj
km − αnuiuj + fij = 0,

(d∗H)ij−Hkij∇kf = 0 and ∆u−du(∇f) = 0

for t ∈ [t1, t2]. Hence (g(t), H(t), u(t)) is a steady gradient GRF system soliton.
�

Below we focus on the expanding breather. First we define the functionals
µ+ and ν+ as follows:

Definition 3.16.

µ+(g,H, u, τ) := inf

{
W+(g,H, u, f, τ)

∣∣∣f∈C∞(M),

∫
M

e−f+

(4πτ)n/2
dµ = 1

}
,
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ν+(g,H, u) := inf
{
µ+(g,H, u, τ)

∣∣∣τ ∈ R+
}
.

By the definitions of functionals µ+ and ν+, we have the following property:

Proposition 3.17. If ϕ : M →M is a diffeomorphism and c > 0 is a constant,
then

(1) µ+(ϕ∗g, ϕ∗H,ϕ∗u, τ)= µ+(g,H, u, τ), ν+(ϕ∗g, ϕ∗H,ϕ∗u)= ν+(g,H, u).
(2) µ+(cg,H, u, cτ) = µ+(g,H, u, τ), ν+(cg,H, u) = ν+(g,H, u).

Now we study the existence, smoothness, and monotonicity of these quanti-
ties.

Lemma 3.18. Let Mn be a closed manifold. If (g(·), H(·), u(·)) is a solution
to the GRF system (1.1) on Mn, then we have

(1) the inf in the definition of µ+ is achieved by a unique w. Moreover,
µ+(g(t), H(t), u(t), t − T ) is non-decreasing in time, and is constant
only on an expanding soliton with H ≡ 0.

(2) If ν+ < 0, then the sup in the definition of ν+ is achieved by a unique
τ . Moreover, ν+(g(t), H(t), u(t)) is non-decreasing in time, and is con-
stant only on an expanding soliton with H ≡ 0.

Proof. This proof is identical to that of Theorem 1.7 of [5]. In particular, we
have the following two formulas

d

dt
µ+(g(t), H(t), u(t), t− T ) =

d

dt
W+(g(t), H(t), u(t), w, t− T ),

where w realizes the minimum at time t, and

d

dt
ν+(g(t), H(t), u(t)) =

d

dt
µ+(g(t), H(t), u(t), τ),

where (w, τ) realizes the minimax at time t, hold. If µ+ and ν+ are fixed
constants, by the monotonicity formula (3.12), the results follow. �

In the same way, using the functional µ+, we prove the nonexistence of the
nontrivial expanding breathers.

Theorem 3.19. Let (g(t), H(t), u(t)) to be a solution to the GRF system (1.1)
on a closed manifold Mn. If (g(t), H(t), u(t)) is a expanding breather, then it
in fact is a steady gradient GRF system soliton with H ≡ 0.

Proof. Let (M, g(t), H(t), u(t)) be a expanding breather with

(3.14) g(t2) = cϕ∗g(t1), H(t2) = cϕ∗H(t1), u(t2) = cϕ∗u(t1),

where t2 > t1 and c > 1. Define τ(t) := t+ t2−ct1
c−1 , so that dτ

dt = 1, τ(t1) = t2−t1
c−1 ,

τ(t2) = c(t2−t1)
c−1 and τ(t2) = cτ(t1). Let f̂2 be the minimizer for W+ at t2, so

that

W+(g(t2), H(t2), u(t2), f̂2, τ(t2)) = µ+(g(t2), H(t2), u(t2), τ(t2)).
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Take f+(t) be to the solution to the equation (3.11) on the time interval [t1, t2]

with the initial data f+(t2) = f̂2. By (3.12) and the definition of µ+ we obtain

µ+(g(t1), H(t1), u(t1), τ(t1)) ≤ W+(g(t1), H(t1), u(t1), f+(t1), τ(t1))

≤ W+(g(t), H(t), u(t), f+(t), τ(t))

≤ W+(g(t2), H(t2), u(t2), f̂2, τ(t2))

= µ+(g(t2), H(t2), u(t2), τ(t2))

for all t∈[t1, t2]. Since (3.14) and τ(t2) = cτ(t1), by Proposition 3.17, we know
that

µ+(g(t1), H(t1), u(t1), τ(t1)) = µ+(g(t2), H(t2), u(t2), τ(t2)).

Furthermore using the fact that W+ is increasing, therefore we have

W+(g(t), H(t), u(t), f+(t), τ(t)) = µ+(g(t), H(t), u(t), τ(t)) ≡ const

for t ∈ [t1, t2]. Thus f+(t) is the minimizer for W+(g(t), H(t), u(t), f+(t), τ(t))
and d

dtW+ ≡ 0, so by (3.12), we have

Rij − αnuiuj + (f+)ij +
gij

2(t− T )
= 0,

∆u− du(∇f+) = 0 and H ≡ 0

for t ∈ [t1, t2], where T = ct1−t2
c−1 . Therefore the result follows. �

4. Curvature evolution equations

In this section we compute evolution equations for curvature tensors, 3-
forms, the Lapse functions and their derivatives under the GRF system (1.1).
We first recall the following result for a general flow (see [2], Lemma 6.5).

Lemma 4.1. Given (Mn, g(t)) with ∂tgij = vij, then

∂tΓ
k
ij = 1/2gkl(∇ivjl +∇jvil −∇lvij),

∂tRijkl = 1/2[∇i∇lvjk+∇j∇kvil−∇i∇kvjl−∇j∇lvik]

+ 1/2(Rijplvkp−Rijpkvlp),
∂tRij = −1/2 [∆Lvij +∇i∇jv − gpq (∇i∇pvjq +∇j∇pviq)] ,

∂tR = −∆v + gpqgrs(∇p∇rvqs −Rprvqs),
where ∆L := ∆vij+2Rikjlvkl−Ripvjp−Rjpvip, Rijkl := gpkR

p
ijl and v := gijvij.

Using the above formulas, we have:

Proposition 4.2. Under the GRF system (1.1), we have

(4.1)

∂tRijkl = ∆Rijkl + 2(Bijkl −Bijlk −Biljk +Bikjl)

−RpjklRpi −RipklRpj −RijplRpk −RijkpRpl
+ 1/4(Rijplhkp −Rijpkhlp)
+ 1/4(∇i∇lhjk +∇j∇khil −∇i∇khjl −∇j∇lhik)

+ 2αn(∇i∇ku∇j∇lu−∇i∇lu∇j∇ku),
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where Bijkl := RpiqjRpkql, and
(4.2)

∂t
(
∇kRm

)
= ∆(∇kRm)+

∑
α+β=k

∇αRm∗∇βRm+
∑

α+β+γ=k

∇αH∗∇βH∗∇γRm

+
∑

α+β=2+k

∇αH∗∇βH+
∑

α+β=k

∇2+αu∗∇2+βu

+
∑

α+β=k−1

du∗∇2+αu∗∇βRm+
∑

α+β+γ=k−2

∇2+αu∗∇2+βu∗∇γRm.

Proof. Let vij = −2Rij + 1/2hij + 2αn∂iu∂ju. We observe that quantities
−2Rij , 1/2hij and 2αn∂iu∂ju are independent in some sense. So we can com-
pute the evolution of curvature under the metric evolving by those three quan-
tities separately.

If ∂tgij = −2Rij , by Hamilton’s Ricci flow result, the evolution equation of
curvature is the first and second lines on the right hand side of (4.1).

If ∂tgij = 1/2hij , using Lemma 4.1, we see that the evolution equation of
curvature is the third and fourth lines on the right hand side of (4.1).

If ∂tgij = 2αn∂iu∂ju, using Lemma 4.1, we have

∂tRijkl = αn [∇i∇l(ujuk) +∇j∇k(uiul)−∇i∇k(ujul)−∇j∇l(uiuk)]

+ αn [Rijpl(ukup)−Rijpk(ulup)]

= ujliuk + ujluki + ujiukl + ujukli + uikjul + uikulj + uijulk + uiulkj

− ujkiul − ujkuli − ujiulk − ujulki − uiljuk − uilukj − uijukl
− uiuklj + αn(Rijplukup −Rijpkulup)

= 2αn(ukiulj − ujkuli),
where ujli := ∇i∇l∇ju. Note that the above computation involves the com-
munication formula ∇i∇j∇lu−∇j∇i∇lu = Rijlp∇pu. Hence (4.1) follows by
adding the above three evolution formulas.

Below we shall prove (4.2). Note that under a general geometric flow ∂tgij =
vij , for any tensor A, we have ∂t∇A = ∇∂tA+A ∗ ∇v and

[∇,∆]A = ∇∆A−∆∇A = Rm ∗ ∇A+∇Rm ∗A.
Therefore, under the GRF system (1.1), we have

∂t∇Rm = ∇∂tRm+Rm ∗ ∇ (Rm+H ∗H + du ∗ du)

= ∇
(

∆Rm+Rm∗Rm+H∗H∗Rm+
∑

α+β=2

∇αH∗∇βH+∇2u∗∇2u
)

+Rm ∗ ∇(Rm+H ∗H + du ∗ du)

= ∆∇Rm+∇Rm ∗Rm+
∑

α+β+γ=1

∇αH∗∇βH∗∇γRm

+
∑

α+β=3

∇αH∗∇βH+∇2u∗∇3u+∇u ∗ ∇2u ∗Rm.
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This finishes the proof of the case k = 1. Now by induction, we assume that
we have gotten the evolution formula of ∇jRm for all 1 ≤ j < k. We begin by
computing

∂t(∇kRm)

= ∂t∇(∇k−1Rm)

= ∇∂t(∇k−1Rm) + (∇k−1Rm) ∗ ∇(Rm+H ∗H + du ∗ du)

= ∇
[
∆(∇k−1Rm)+

∑
α+β=k−1

∇αRm∗∇βRm+
∑

α+β+γ=k−1

∇αH∗∇βH∗∇γRm

+
∑

α+β=1+k

∇αH∗∇βH+
∑

α+β=k−1

∇2+αu∗∇2+βu+
∑

α+β=k−2

du∗∇2+αu∗∇βRm

+
∑

α+β+γ=k−3

∇2+αu∗∇2+βu∗∇γRm
]
+(∇k−1Rm)∗∇(Rm+H∗H+du∗du)

= ∆(∇kRm)+
∑

α+β=k

∇αRm∗∇βRm+
∑

α+β+γ=k

∇αH∗∇βH∗∇γRm

+
∑

α+β=2+k

∇αH∗∇βH+
∑

α+β=k

∇2+αu∗∇2+βu+
∑

α+β=k−1

du∗∇2+αu∗∇βRm

+
∑

α+β+γ=k−2

∇2+αu∗∇2+βu∗∇γRm.

This completes the inductive step. Hence we prove (4.2). �

By the above curvature evolution equation under the system (1.1), we have:

Corollary 4.3. Under the GRF system (1.1), we have

(4.3) ∂tRm = ∆Rm+Rm∗Rm+H∗H∗Rm+
∑

α+β=2

∇αH∗∇βH+∇2u∗∇2u;

(4.4)

∂t|Rm|2 ≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3 + C(|H|2 + |du|2) · |Rm|2

+ C
∑

α+β=2

|∇αH| · |∇βH| · |Rm|+ C|∇2u|2 · |Rm|;

∂t
∣∣∇kRm∣∣2(4.5)

≤ ∆
∣∣∇kRm∣∣2−2

∣∣∇k+1Rm
∣∣2+C ∣∣∇kRm∣∣ ·∑

α+β=k

|∇αRm|·|∇βRm|

+ C
∣∣∇kRm∣∣ ·∑

α+β+γ=k

|∇βH|·|∇γH|·|∇αRm|

+ C
∣∣∇kRm∣∣ ·∑

α+β=2+k

|∇αH|·|∇βH|+C
∣∣∇kRm∣∣ ·∑

α+β=k

|∇2+αu|·|∇2+βu|
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+ C
∣∣∇kRm∣∣ ·∑

α+β=k−1

|du|·|∇2+αu|·|∇βRm|

+ C
∣∣∇kRm∣∣ · ∑

α+β+γ=k−2

|∇2+αu|·|∇2+βu|·|∇γRm|+C|du|2·
∣∣∇kRm∣∣2 .

Proof. Evolution formula (4.3) is obvious. Next we will prove the second evo-
lution formula. By the evolution equation (4.1), we have

∂t|Rm|2 = 2Rm ∗ (∂tRm) +Rm ∗Rm ∗ (Rc+H ∗H + du ∗ du)

= 2Rm∗
(

∆Rm+Rm∗Rm+Rm∗H∗H+
∑

α+β=2

∇αH∗∇βH+∇2u∗∇2u
)

+Rm ∗Rm ∗ (Rc+H ∗H + du ∗ du)

≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3 + C
(
|H|2 + |du|2

)
· |Rm|2

+ C
∑

α+β=2

|∇αH| · |∇βH| · |Rm|+ C|∇2u|2 · |Rm|.

Hence (4.4) follows. In the end we will prove (4.5). Using

∂t
∣∣∇kRm∣∣2 = 2

〈
∂t(∇kRm),∇kRm

〉
+ (Rm+H∗H+du∗du) ∗ (∇kRm)2

and combining with (4.2), then (4.5) follows. �

Proposition 4.4. Under the GRF system (1.1), we have

(4.6) ∂t(∇H) = ∆(∇H) +
∑

α+β=1

∇αRm∗∇βH +H∗H∗∇H + du∗∇2u∗H

and for all k ≥ 2

(4.7)

∂t(∇kH) = ∆(∇kH) +
∑

α+β=k

∇αRm∗∇βH +
∑

α+β+γ=k

∇αH∗∇βH∗∇γH

+
∑

α+β=k−1

du∗∇2+αu∗∇βH +
∑

α+β+γ=k−2

∇2+αu∗∇2+βu∗∇γH.

Proof. Recall that ∂tH = ∆H +H ∗Rm. Hence

∂t(∇H) = ∇∂tH +H ∗ ∇(Rm+H ∗H + du⊗ du)

= ∇(∆H +H ∗Rm) +H ∗ ∇(Rm+H ∗H + du⊗ du)

= ∆∇H +Rm∗∇H +∇Rm ∗H +H∗H∗∇H + du∗∇2u∗H

and (4.6) follows. In the following, we assume the evolution equation ∇jH for
all 1 ≤ j < k holds as in (4.7) and we want to prove this also holds for the case
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j = k.

∂t
(
∇kH

)
= ∇

(
∂t∇k−1H

)
+∇k−1H∗∇(Rm+H∗H+du⊗ du)

= ∇
[
∆(∇k−1H) +

∑
α+β=k−1

∇αRm∗∇βH +
∑

α+β+γ=k−1

∇αH∗∇βH∗∇γH

+
∑

α+β=k−2

du∗∇2+αu∗∇βH +
∑

α+β+γ=k−3

∇2+αu∗∇2+βu∗∇γH
]

+∇k−1H∗∇(Rm+H∗H+du⊗ du)

= ∆(∇kH) +
∑

α+β=k

∇αRm∗∇βH +
∑

α+β+γ=k

∇αH∗∇βH∗∇γH

+
∑

α+β=k−1

du∗∇2+αu∗∇βH +
∑

α+β+γ=k−2

∇2+αu∗∇2+βu∗∇γH.

This completes the proposition. �

By Proposition 4.4, we have:

Corollary 4.5. Under the GRF system (1.1), we have

∂t|∇H|2 ≤ ∆|∇H|2−2|∇2H|2+C|∇H|·
∑

α+β=1

|∇αRm|·|∇βH|

+ C
(
|H|2 + |du|2

)
·|∇H|2+C|du| · |∇2u|·|H|·|∇H|

and for all k ≥ 2

∂t|∇kH|2
(4.8)

≤ ∆|∇kH|2−2|∇k+1H|2+C|∇kH|·
∑

α+β=k

|∇αH|·|∇βRm|

+C|∇kH| ·
∑

α+β+γ=k

|∇αH|·|∇βH|·|∇γH|+ C|∇kH| ·
∑

α+β=k−1

|du|·|∇2+αu|·|∇βH|

+C|du|2·|∇kH|2 + C|∇kH| ·
∑

α+β+γ=k−2

|∇2+αu| · |∇2+βu|·|∇γH|.

Proof. The proof of this corollary is similar to that of Corollary 4.3. �

Proposition 4.6. Under the GRF system (1.1), we also have

(4.9)
∂t(uij) = ∆(uij) + 2Ripjqupq −Ripujp −Rjpuip − 2αn|du|2uij

− 1/4(∇ihjk +∇jhik −∇khij)uk;

∂t
(
∇2+ku

)
= ∆(∇2+ku) +

∑
α+β=k

∇2+αu∗∇βRm(4.10)

+
∑

α+β=k−1

du∗∇2+αu∗∇2+βu
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+
∑

α+β+γ=k−2

∇2+αu∗∇2+βu∗∇2+γu+|du|2·∇2+ku

+
∑

α+β+γ=k

∇1+αH∗∇βH∗∇1+γu.

Proof. We calculate

(4.11) ∂t(uij) = ∇i∇j (∂tu)−
(
∂tΓ

k
ij

)
uk.

Note that

∇i∇j(ut) = ∇i∇j(∇k∇ku)

= ∇i(∇k∇j∇ku+Rjkkp∇pu)

= ∇k∇i∇k∇ju+Rikjp∇p∇ku+Rikkp∇j∇pu−∇iRjp∇pu
−Rjp∇i∇pu

= ∇k∇k∇i∇ju+∇kRikjp∇pu+Rikjp∇k∇pu+Rikjp∇p∇ku
−Rip∇j∇pu−∇iRjp∇pu−Rjp∇i∇pu

= ∆(uij)+2Ripjqupq−Ripujp−Rjpuip+∇kRikjp∇pu−∇iRjp∇pu
and

−
(
∂tΓ

k
ij

)
uk = gkl(∇iRjl +∇jRil −∇lRij)uk

− 1/4gkl(∇ihjl +∇jhil −∇lhij)uk + gkl(−2αn∇i∇jul)uk.

Substituting the above two formulas into (4.11), then (4.9) follows from the
second Bianchi identity.

For the second part, we prove (4.10) by induction where the claim for ∇2+0u
is proven in (4.9). Plugging in the induction hypotheses for ∇2+ku, we compute

∂t(∇2+k+1u) = ∇
(
∂t∇2+ku

)
+∇2+ku∗∇(Rm+H∗H+du ∗ du)

= ∇
[
∆(∇2+ku)+

∑
α+β=k

∇2+αu∗∇βRm+
∑

α+β=k−1

du∗∇2+αu∗∇2+βu

+
∑

α+β+γ=k−2

∇2+αu∗∇2+βu∗∇2+γu+|du|2·∇2+ku

+
∑

α+β+γ=k

∇1+αH∗∇βH∗∇1+γu
]

+∇2+ku ∗ ∇(Rm+H ∗H+du ∗ du).

This can be rearranged to yield the claim for ∇2+(k+1)u. �

In the same way, we have:

Corollary 4.7. Under the GRF system (1.1), we have

∂t|∇2u|2 ≤ ∆|∇2u|2 − 2|∇3u|2 + C(|Rm|+ |H|2 + |du|2)|∇2u|2

+ C|H| · |∇H| · |du| · |∇2u|
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and for all k ≥ 0,
(4.12)

∂t|∇2+ku|2 ≤ ∆|∇2+ku|2−2|∇3+ku|2 + C|∇2+ku| ·
∑

α+β=k

|∇2+αu| · |∇βRm|

+ C|∇2+ku| ·
∑

α+β=k−1

|du| · |∇2+αu| · |∇2+βu|

+ C|∇2+ku| ·
∑

α+β+γ=k−2

|∇2+αu| · |∇2+βu| · |∇2+γu|

+ C(H2 + |du|2) · |∇2+ku|2

+ C|∇2+ku| ·
∑

α+β+γ=k

|∇1+αH| · |∇βH| · |∇1+γu|.

5. Estimates of Bernstein-Bando-Shi type

In this section we will prove derivative estimates for geometric solutions of
the system (1.1). These estimates are generalizations of the Bernstein-Bando-
Shi (BBS for short) estimates for Ricci flow. Our proof follows that in [14], see
also [2, 3].

The evolution equations for u and |du|2 give us good control on the behavior
of the derivative of the Lapse function.

Proposition 5.1. Let (g(x, t), H(x, t), u(x, t)) be a solution to the system (1.1)
on a closed manifold Mn on 0 ≤ t ≤ T . Then we have

(5.1) inf
x∈Mn

u(x, 0) ≤ u(x, t) ≤ sup
x∈Mn

u(x, 0);

(5.2) sup
x∈Mn

|du|2(x, t) ≤ max
x∈Mn

|du|2(x, 0);

(5.3) sup
x∈Mn

|du|2(x, t) ≤ 1

2αnt

for all (x, t) ∈Mn × (0, T ].

Proof. Since Mn is closed, we can obtain (5.1) by applying the maximum
principle to ut = ∆u. Similarly, using the maximum principle to the following
equation

∂t|du|2 = ∆|du|2 − 1/2|Hiklui|2 − 2|∇2u|2 − 2αn|du|4

to obtain (5.2). In the end, we will prove (5.3). Note that

∂t|du|2 = ∆|du|2 − 1/2|Hiklui|2 − 2|∇2u|2 − 2αn|du|4 ≤ ∆|du|2 − 2αn|du|4.
Applying maximum principle, we have |du|2 ≤ 1

2αnt
for all (x, t) ∈ Mn ×

(0, T ]. �

We also have the following result.
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Theorem 5.2. Let (g(x, t), H(x, t), u(x, t)) be a solution to the system (1.1)
on a closed manifold Mn on 0 ≤ t ≤ T and C1 and C2 are arbitrary given
nonnegative constants. Then there exists a constant C(n) depending only on n
such that if

|Rm(x, t)|g(x,t) ≤ C1 and |H(x)|g(x,0) ≤ C2

for all (x, t) ∈Mn × [0, T ], then

|H(x, t)|g(x,t) ≤ C2 · eC(n)·C1t

for all (x, t) ∈Mn × [0, T ].

Proof. Note that

∂tHijk = ∆Hijk −RipHpjk −RpijqHpqk −RpikqHpjq

+RjpHpik +RpjiqHpqk +RpjkqHpiq

−RkpHpij −RpkiqHpqj −RpkjqHpiq

≤ ∆Hijk + C(n) · C1 · |H|.

Hence
∂t|H|2 ≤ ∆|H|2−2|∇H|2 + C(n) · C1 · |H|2

+ 2HikpHjkp(2Rij−1/2hij−2αnuiuj)

≤ ∆|H|2 + C(n) · C1 · |H|2.
Let ρ(t) be the solution to the corresponding ODE: ∂tρ

2 = C(n) · C1 · ρ2 with
ρ(0) = C2. By the maximum principle, we have |H(x, t)|2 ≤ C2

2 · eC(n)·C1t. �

Note that the above two theorems may not hold on non-compact manifolds.
Because we may not apply the maximum principle directly on non-compact
manifolds.

In the following, we will derive the Bernstein-Bando-Shi derivative estimates
of the GRF system (1.1) on complete manifolds. First we give the maximum
principle on non-compact manifolds under the GRF system (1.1).

Theorem 5.3. Let (g(x, t), H(x, t), u(x, t)) be a solution to the system (1.1)
on a complete manifold Mn on 0 ≤ t ≤ T . Assume that g(t) ≥ g∗, where g∗
is a complete metric, and that R∗(t) := infM

[
R− 1

4 |H|
2 − αn|du|2

]
is finite

and integrable on [0, T ]. Let v(x, t) be a Lipschitz weak subsolution to the heat
equation: vt ≤ ∆g(t)v such that there exist a constant b > 0 and O ∈Mn where∫ T

0

∫
M

e−bd
2
∗(O,x)v2

+(x, t)dµt(x)dt <∞,

where d∗(O, x) denotes the distance with respect to g∗ and v+ := max{v, 0}. If
v(x, 0) ≤ 0, then v(x, t) ≤ 0 on M × [0, T ].

Proof. See Theorem 7.42 in [3]. �

Using the above theorem, we have our main result in this section.
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Theorem 5.4. Let (g(x, t), H(x, t), u(x, t)) be a solution to the system (1.1)
on a complete manifold Mn on 0 ≤ t ≤ T and Ki (i = 1, 2, 3) be an arbitrary
given positive constant. Then for each β > 0 and each integer m ≥ 1 there
exists a constant Cm depending on n,K1,K2,K3,max{β, 1} and m such that
if

(5.4) |Rm(x, t)|g(x,t) ≤ K1, |H(x, t)|g(x,t) ≤ K2 and |du(x, t)|g(x,t) ≤ K3

for all (x, t) ∈Mn × [0, βK ], then

|∇m−1Rm(x, t)|g(x,t) + |∇mH(x, t)|g(x,t) + |∇m+1u(x, t)|g(x,t) ≤
Cm
tm/2

for all (x, t) ∈Mn × (0, βK ].

Proof. The proof is by complete induction on m. First consider m = 1. In the
discussion below the constant C may change from line to line and depends on
some or all of n,K1,K2,K3,max{β, 1}, and m. By Corollaries 4.3, 4.5 and 4.7,
we have

∂t|Rm|2 ≤ ∆|Rm|2−2|∇Rm|2 + C
∑

α+β=2

|∇αH| · |∇βH|+C|∇2u|2 + C;

∂t|∇H|2≤ ∆|∇H|2−2|∇2H|2+C|∇H|·
∑

α+β=1

|∇αRm|·|∇βH|

+C|∇H|2+C|∇H|·|∇2u|;

∂t|∇2u|2 ≤ ∆|∇2u|2 − 2|∇3u|2 + C|∇2u|2 + C|∇H| · |∇2u|;
∂t|H|2 ≤ ∆|H|2 − 2|∇H|2 + C; ∂tu

2 = ∆(u2)− 2|∇u|2;

∂t|du|2 = ∆|du|2 − 1/2|Hiklui|2 − 2|∇2u|2 − 2αn|du|4

≤ ∆|du|2 − 2|∇2u|2 − 2αn|du|4.

Now we consider the quantity v := t
[
|Rm|2 + |∇H|2 + |∇2u|2

]
+ A|H|2 +

B|du|2, where A and B are both positive constants, to be determined later.
Using the above evolution formulas, we compute

vt ≤ t
[
∆|Rm|2−2|∇Rm|2+C|∇2u|2+C|∇2H|+C|∇H|2+C

(5.5)

+ ∆|∇H|2−2|∇2H|2+C|∇H|·|∇Rm|+C|∇H|·|∇2u|

+ ∆|∇2u|2 − 2|∇3u|2 + C|∇H|·|∇2u|
]
+|∇H|2+|∇2u|2 + C

+A
[
∆|H|2 − 2|∇H|2 + C

]
+B

[
∆|du|2 − 2|∇2u|2 − 2αn|du|4

]
≤ ∆v + t

[
C|∇2u|2 + C|∇2H|+ C − 2|∇2H|2 + C|∇H|2 − 2|∇3u|2

]
− 2A|∇H|2 − 2B|∇2u|2 − 2αnB|du|4 + |∇H|2 + |∇2u|2+C
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≤ ∆v+t
[
C|∇2u|2+C+C|∇H|2

]
−2A|∇H|2−2B|∇2u|2+|∇H|2+|∇2u|2+C

= ∆v + (Ct+ 1− 2B)|∇2u|2 + (Ct+ 1− 2A)|∇H|2 + Ct+ C,

where for the third equality we used C|∇2H| − 2|∇2H|2 + C ≤ 0.
As along as A and B are chosen large enough such that Ct + 1 − 2B ≤ 0

and Ct + 1 − 2A ≤ 0, by (5.5), we have vt ≤ ∆v + C. Since v(0) ≤ C, by
Theorem 5.3, we apply the maximum principle to above inequality v(x, t) ≤ C
for all (x, t) ∈Mn × [0, βK ]. This proves the theorem in the case m = 1.

Next we shall prove the theorem for m = 2. Consider the following quantity

v := t2
[
|∇Rm|2+|∇2H|2+|∇3u|2

]
+ tE

[
|Rm|2+|∇H|2+|∇2u|2

]
+A|H|2 +B|du|2,

where A, B and E are all positive constants, to be determined later.
Note that by (4.5), (4.8) and (4.12), using the fact: |∇H| + |∇2u| ≤ C

t1/2

(the case m = 1), we have

∂t|∇Rm|2 ≤ ∆|∇Rm|2−2|∇2Rm|2+C|∇Rm|2+C|∇H|·|∇Rm|
+ C|∇3H|·|∇Rm|+ C|∇H|·|∇2H|·|∇Rm|
+ |∇2u|·|∇3u|·|∇Rm|+C|∇2u|·|∇Rm|

≤ ∆|∇Rm|2−2|∇2Rm|2+C|∇Rm|2+
C

t1/2
|∇Rm|+C|∇3H|·|∇Rm|

+
C

t1/2
|∇2H|·|∇Rm|+ C

t1/2
|∇3u|·|∇Rm|

≤ ∆|∇Rm|2−2|∇2Rm|2+

(
C+

C

t

)
|∇Rm|2

+ |∇3H|2+|∇2H|2+|∇3u|2+C,

∂t|∇2H|2 ≤ ∆|∇2H|2−2|∇3H|2+C|∇2H|·|∇2Rm|+C|∇2H|·|∇H|·|∇Rm|
+ C|∇2H|2 + C|∇2H|·|∇H|2+C|∇2H|·|∇H|·|∇2u|
+ C|∇2H|·|∇3u|+C|∇2H|·|∇2u|2

≤ ∆|∇2H|2−2|∇3H|2+C|∇2H|·|∇2Rm|+ C

t1/2
|∇2H|·|∇Rm|

+ C|∇2H|2 +
C

t
|∇2H|+C|∇2H|·|∇3u|

≤ ∆|∇2H|2−2|∇3H|2+|∇2Rm|2+
C

t
|∇Rm|2+

(
C+

C

t2

)
|∇2H|2

+ |∇3u|2+C

and

∂t|∇3u|2 ≤ ∆|∇3u|2−2|∇4u|2+C|∇3u|·|∇2u|·|∇Rm|+C|∇3u|2

+ C|∇3u|·|∇2u|2 + C|∇3u|·|∇2H|+C|∇3u|·|∇H|2
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+ C|∇3u|·|∇H|·|∇2u|

≤ ∆|∇3u|2−2|∇4u|2+ C

t1/2
|∇3u|·|∇Rm|+C|∇3u|2+C

t
|∇3u|

+ C|∇3u|·|∇2H|

≤ ∆|∇3u|2−2|∇4u|2+
C

t
|∇Rm|2+

(
C+

C

t2

)
|∇3u|2+|∇2H|2+C.

Hence we have

∂t|∇Rm|2+∂t|∇2H|2+∂t|∇3u|2

≤ ∆|∇Rm|2+∆|∇2H|2+∆|∇3u|2−|∇2Rm|2−|∇3H|2

−2|∇4u|2+

(
C+

C

t

)
|∇Rm|2+

(
C+

C

t2

)
|∇2H|2+

(
C+

C

t2

)
|∇3u|2+C.

Using the fact: |∇H|+ |∇2u| ≤ C
t1/2 , we also have

∂t|Rm|2+∂t|∇H|2+∂t|∇2u|2

≤ ∆|Rm|2+∆|∇H|2+∆|∇2u|2

− 2|∇Rm|2−2|∇2H|2−2|∇3u|2+
C

t
+ C|∇2H|+C+C|∇H|·|∇Rm|

≤ ∆|Rm|2+∆|∇H|2+∆|∇2u|2−|∇Rm|2−|∇2H|2−2|∇3u|2+
C

t
+C.

By the above evolution formulas, we obtain

vt ≤ 2t
[
|∇Rm|2 + |∇2H|2 + |∇3u|2

]
+ E

[
|Rm|2 + |∇H|2 + |∇2u|2

]
+ t2

[
∂|∇Rm|2

∂t
+
∂|∇2H|2

∂t
+
∂|∇3u|2

∂t

]
+ tE

[
∂|Rm|2

∂t
+
∂|∇H|2

∂t
+
∂|∇2u|2

∂t

]
+A

[
∆|H|2−2|∇H|2+C

]
+B

[
∆|du|2−2|∇2u|2−2αn|du|4

]
≤ ∆v + 2t

[
|∇Rm|2 + |∇2H|2 + |∇3u|2

]
+ E

[
|Rm|2 + |∇H|2 + |∇2u|2

]
+ [C(t2 + t)|∇Rm|2 + C(t2 + t)|∇2H|2 + C(t2 + 1)|∇3u|2] + Ct2

− t[E|∇Rm|2+E|∇2H|2+2E|∇3u|2]+EC+tEC−2A|∇H|2

− 2B|∇2u|2+AC.

Taking E large enough compared to C, the above inequality reduces to

vt ≤ ∆v+E
[
|Rm|2 + |∇H|2 + |∇2u|2

]
−2A|∇H|2−2B|∇2u|2+C.

Choosing A and B large enough compared to E, we conclude vt ≤ ∆v+C. Since
v(0) ≤ C, by Theorem 5.3, using the maximum principle, we have v(x, t) ≤ C

for all (x, t) ∈Mn × [0, βK ]. This proves the theorem in the case m = 2.
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In the following, we shall assume by induction that given m ∈ N and m ≥ 3,

(5.6) |∇j−1Rm(x, t)|g(x,t) + |∇jH(x, t)|g(x,t) + |∇j+1u(x, t)|g(x,t) ≤
Cj
tj/2

for j = 1, . . . ,m, and want to prove
(5.7)

|∇mRm(x, t)|g(x,t)+|∇m+1H(x, t)|g(x,t)+|∇m+2u(x, t)|g(x,t) ≤
Cm+1

t(m+1)/2
.

Let

v : = tm+1
[
|∇mRm|2 + |∇m+1H|2 + |∇m+2u|2

]
+

m∑
i=1

Eit
i
[
|∇i−1Rm|2 + |∇iH|2 + |∇i+1u|2

]
+A|H|2 +B|du|2,

where A, B and Ei are all positive constants, to be determined later. By
Corollary 4.3, Corollary 4.5 and Corollary 4.7, using (5.6), we have
(5.8)

∂t|∇mRm|2 ≤ ∆|∇mRm|2−2|∇m+1Rm|2+C|∇mRm|2+
C

t
m+2

2

|∇mRm|

+ C

(
1

tm/2
+

1

t
m+1

2

)
|∇mRm|+ C|∇m+2H| · |∇mRm|

+
C

t1/2
|∇m+1H| · |∇mRm|+ C

t1/2
|∇2+mu| · |∇mRm|

= ∆|∇mRm|2 − 2|∇m+1Rm|2 + C|∇mRm|2

+ C

(
1

tm/2
+

1

t
m+1

2

+
1

t
m+2

2

)
|∇mRm|+C|∇m+2H| · |∇mRm|

+
C

t1/2
|∇m+1H| · |∇mRm|+ C

t1/2
|∇2+mu| · |∇mRm|

≤ ∆ |∇mRm|2 − 2
∣∣∇m+1Rm

∣∣2 + |∇m+2H|2 + C|∇m+1H|2

+ C

(
1

tm
+

1

tm+1
+

1

t
+1

)
|∇mRm|2 + C|∇2+mu|2+

1

t
+C,

where for the last inequality, we used the following Young inequalities:

C|∇m+2H|·|∇mRm| ≤ |∇m+2H|2+C|∇mRm|2,
C

t1/2
|∇m+1H|·|∇mRm| ≤ C|∇m+1H|2+

C

t
|∇mRm|2,

C

t1/2
|∇2+mu|·|∇mRm| ≤ C|∇2+mu|2+

C

t
|∇mRm|2,

C

t
m+2

2

|∇mRm| ≤ C

tm+1
|∇mRm|2+

1

t
,

and
C

tm/2
|∇mRm| ≤ C

tm
|∇mRm|2+C,

C

t
m+1

2

|∇mRm| ≤ C

tm+1
|∇mRm|2+C.
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In the same way, we have

∂t|∇m+1H|2 ≤ ∆|∇m+1H|2−2|∇m+2H|2+C|∇m+1H|2+
C

t
m+2

2

|∇m+1H|

(5.9)

+ C|∇m+1H| · |∇m+1Rm|+ C

t1/2
|∇m+1H| · |∇mRm|

+
C

t
m+1

2

|∇m+1H|+ C|∇m+1H| · |∇2+mu|

≤ ∆|∇m+1H|2−2|∇m+2H|2+C

(
1+

1

tm+1

)
·|∇m+1H|2+

1

t

+ |∇m+1Rm|2+
C

t
|∇mRm|2+C|∇2+mu|2

and

∂t|∇2+mu|2 ≤ ∆|∇2+mu|2−2|∇3+mu|2+C|∇2+mu|2+
C

t
m+2

2

|∇2+mu|

(5.10)

+
C

t
1
2

|∇2+mu||∇mRm|+ C

t
m+1

2

|∇2+mu|+C|∇2+mu||∇1+mH|

≤ ∆|∇2+mu|2−2|∇3+mu|2+C

(
1+

1

tm+1

)
·|∇2+mu|2+

1

t

+ C|∇mRm|2+C|∇1+mH|2.

Combining (5.8), (5.9) and (5.10), we get

∂t
(
|∇mRm|2+|∇m+1H|2+|∇2+mu|2

)
≤ ∆|∇mRm|2+∆|∇m+1H|2+∆|∇2+mu|2 − 2|∇3+mu|2

− |∇m+1Rm|2 − |∇m+2H|2 + C

(
1 +

1

tm+1

)
·|∇m+1H|2

+ C

(
1

tm
+

1

tm+1
+

1

t
+1

)
|∇mRm|2 + C

(
1 +

1

tm+1

)
·|∇2+mu|2+

1

t
+C.

Using formula (5.6), we also have

m∑
i=1

Eit
i · ∂t[|∇i−1Rm|2 + |∇iH|2 + |∇i+1u|2]

≤
m∑
i=1

Eit
i

{
∆|∇i−1Rm|2 + ∆|∇iH|2 + ∆|∇i+1u|2 − 2|∇iRm|2 − 2|∇i+1H|2

− 2|∇i+2u|2 + C|∇i−1Rm|2 + C

(
1

t
i−1

2

+
1

ti/2
+

1

t
i+1
2

)
·|∇i−1Rm|

+ C|∇i+1H|·|∇i−1Rm|+ C

t
1
2

|∇iH|·|∇i−1Rm|+ C

t
1
2

|∇i+1u|·|∇i−1Rm|
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+ C|∇iH|2 +
C|∇iH|
t
i+1
2

+ C|∇iH|·|∇iRm|+ C

t
1
2

|∇iH|·|∇i−1Rm|

+
C|∇iH|
t

i
2

+ C|∇iH|·|∇i+1u|+ C|∇i+1u|2+
C

t
i+1
2

|∇i+1u|

+
C

t
1
2

|∇i+1u|·|∇i−1Rm|+ C

t
i
2

|∇i+1u|+ C|∇i+1u|·|∇iH|

}

≤
m∑
i=1

Eit
i
{

∆|∇i−1Rm|2+∆|∇iH|2+∆|∇i+1u|2−2
∣∣∇iRm∣∣2−2|∇i+1H|2

− 2|∇i+2u|2
}

+

m∑
i=1

Eit
i

{
C

ti
+
C

t
i
2

|∇i+1H|

+
C

t
i
2

|∇iRm|+ C

t
i+1
2

(|∇i−1Rm|+|∇iH|+|∇i+1u|)
}
.

Therefore combining the above evolution formulas, we conclude that

vt ≤ ∆v+(m+ 1)tm
[
|∇mRm|2+|∇m+1H|2+|∇m+2u|2

]
(5.11)

+ tm+1
{
C

(
1+

1

tm+1

)
·|∇m+1H|2

+ C

(
1

tm
+

1

tm+1
+

1

t
+1

)
|∇mRm|2

+ C

(
1+

1

tm+1

)
·|∇2+mu|2+

1

t
+C
}

+

m∑
i=1

iEit
i−1
[
|∇i−1Rm|2+|∇iH|2+|∇i+1u|2

]
+

m∑
i=1

Eit
i
{
−2|∇iRm|2−2|∇i+1H|2−2|∇i+2u|2

}
+

m∑
i=1

Eit
i
{C
ti

+
C

t
i
2

|∇i+1H|

+
C

t
i
2

|∇iRm|+ C

t
i+1
2

(
|∇i−1Rm|+|∇iH|+|∇i+1u|

)}
− 2A|∇H|2−2B|∇2u|2 +AC

≤ ∆v+C(tm+1+tm+t+1)·
[
|∇mRm|2+|∇m+1H|2+|∇m+2u|2

]
+

m−1∑
i=0

(i+ 1)Ei+1t
i
[
|∇iRm|2+|∇i+1H|2+|∇i+2u|2

]
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+

m∑
i=1

Eit
i
{
−2
∣∣∇iRm∣∣2−2|∇i+1H|2−2|∇i+2u|2

}
+ C

m∑
i=1

Eit
i/2
{
|∇i+1H|+|∇iRm|

}
+ C

m∑
i=1

Eit
i−1

2

{
|∇i−1Rm|+|∇iH|+|∇i+1u|

}
− 2A|∇H|2−2B|∇2u|2+

(
A+

m∑
i=1

Ei

)
C.

Now choose (i + 1)Ei+1 = Ei, Ei = M
i! , where M is constant which is deter-

mined later. We also notice the following estimate

C

m∑
i=1

Eit
i/2
{
|∇i+1H|+|∇iRm|

}
≤ 1

2

m∑
i=1

Eit
i
{
|∇i+1H|2+|∇iRm|2

}
+

1

2
C2

m∑
i=1

Ei.

Hence the above inequality (5.11) reduces to

(5.12)

vt ≤ ∆v+C(tm+1+tm+t+1)·
[
|∇mRm|2+|∇m+1H|2 + |∇m+2u|2

]
+

m∑
i=1

Eit
i
{
−
∣∣∇iRm∣∣2−|∇i+1H|2−|∇i+2u|2

}
+ C

m∑
i=1

Eit
i−1

2

{
|∇i−1Rm|+|∇iH|+|∇i+1u|

}
− 2A|∇H|2−2B|∇2u|2 +

(
A+

m∑
i=1

Ei

)
C.

We also see that

C

m∑
i=1

Eit
i−1

2

{
|∇i−1Rm|+ |∇iH|+ |∇i+1u|

}
= CE1+CE1|∇H|+CE1|∇2u|+C

m−1∑
i=1

Ei+1t
i
2

{
|∇iRm|+|∇i+1H|+|∇i+2u|

}
≤ CE1 + CE1|∇H|+ CE1|∇2u|+ C(Ei, Ei+1)

+
1

2

m−1∑
i=1

Eit
i
{
|∇iRm|2+|∇i+1H|2+|∇i+2u|2

}
.

Therefore (5.12) becomes

vt ≤ ∆v+C(tm+1+tm+t+1)·
[
|∇mRm|2+|∇m+1H|2 + |∇m+2u|2

]
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− 1

2
Emt

m
{
|∇mRm|2 +|∇m+1H|2+|∇m+2u|2

}
+ CE1+CE1|∇H|+CE1|∇2u|+C(Ei, Ei+1)

− 2A|∇H|2−2B|∇2u|2+
(
A+

m∑
i=1

Ei

)
C.

Keep in mind Ei = M
i! . Now we choose M large enough and get

vt ≤ ∆v + CE1+CE1|∇H|+CE1|∇2u|+C(Ei, Ei+1)

− 2A|∇H|2−2B|∇2u|2+
(
A+

m∑
i=1

Ei

)
C.

At last, choosing A and B large enough compared to E1, we have vt ≤ ∆v+C.
Since v(0) ≤ C, by Theorem 5.3, the maximum principle gives v(x, t) ≤ C for

all (x, t) ∈Mn × [0, βK ]. This proves the theorem for the case of m+ 1. �

Remark 5.5. We do not know if condition (5.4) guarantee the existence of
solutions to (1.1) on complete manifolds. For closed manifolds, if we replace
conditions |H(x, t)|g(t) ≤ K2 and |du(x, t)|g(t) ≤ K3 by |H(x, 0)|g(0) ≤ K2 and
|du(x, 0)|g(0) ≤ K3, then Theorem 5.4 still holds. In fact, by Proposition 5.1
and Theorem 5.2, bounds of two quantities at initial time imply their bounds
at any time.

Following the arguments of [2], we extend these estimates to obtain bounds
on the curvatures and all of their derivatives on compact manifolds.

Corollary 5.6. Let (g(x, t), H(x, t), u(x, t)) be a solution to system (1.1) on
closed manifolds Mn on [0, T ]. If there exist γ > 0 and Ki > 0 (i = 1, 2, 3)
such that

|Rm(x, t)|g(x,t) ≤ K1, |H(x, 0)|g(x,0) ≤ K2 and |du(x, 0)|g(x,0) ≤ K3

for all (x, t) ∈ Mn × [0, T ], where T > γ
K , then for all m ∈ N, there exists a

constant Cm depending only on n,K1,K2,K3,max{β, 1} and m such that

|∇m−1Rm(x, t)|g(x,t) + |∇mH(x, t)|g(x,t) + |∇m+1u(x, t)|g(x,t) ≤ Cm

for all (x, t) ∈Mn × [min{γ,1}
K , T ].

Proof. Let γ1 := min{γ, 1} and t0 ∈ [γ1

K , T ] be arbitrary. Define T0 := t0 − γ1

K .

Additionally, let t̄ = t−T0. We define (ḡ(x, t̄), H̄(x, t̄), ū(x, t̄)) to be the solution
of the initial value problem

∂t̄ḡij = −2R̄ij + 1/2h̄ij + 2αn∂iū∂j ū

∂t̄H̄ = ∆̄LBH̄ and ∂t̄ū = ∆̄ū

with (ḡ(0), H̄(0), ū(0)) = (g(T0), H(T0), u(T0)). Since solutions to the GRF
system (1.1) are unique, ḡ(t̄) = g(t̄ + T0) = g(t), H̄(t̄) = H(t̄ + T0) = H(t)
and ū(t̄) = u(t̄ + T0) = u(t) for t̄ ∈ [0, γ1

K ]. We assume that |R̄m|ḡ ≤ K and
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|H̄(x)|ḡ ≤ K for t̄ ∈ [0, γ1

K ], so that we can apply our BBS estimates with

β = γ1. Then there exists a constant C̄m such that

|∇m−1R̄m|ḡ + |∇mH̄|ḡ + |∇m+1ū|ḡ ≤
C̄m
t̄m/2

for all (x, t̄) ∈ Mn × [0, γ1

K ]. Note that for t̄ ∈ [ γ1

2K ,
γ1

K ], we have t̄m ≥ γm
1

2mKm .
In particular, taking t̄ = γ1/K, we see that

|∇m−1Rm(x, t0)|+ |∇mH(x, t0)|+ |∇m+1u(x, t0)| ≤ 2mKmC̄m
γm1

for all x ∈Mn. Since t0 was arbitrary, the result follows. �

6. Compactness theorem for the GRF system

Given a sequence of solutions (Mk, gk(t)) to the Ricci flow, Hamilton’s
Cheeger-Gromov-type compactness theorem in [7] states that in the presence of
injectivity radii and curvature bounds we can take a C∞ limit of a subsequence.
The role of the Hamilton’s compactness theorem is primarily to understand sin-
gularity formation. In this section, we state a similar phenomenon in the GRF
system, which is also a useful tool to understand the singularities of the GRF
system.

Definition 6.1. Given a sequence of complete Riemannian manifolds Mk

with origin Ok, Riemannian metrics gk, 3-forms Hk and smooth functions
uk, we say that the sequence (Mk, gk, Hk, uk, Ok) converges to the limit
(M∞, g∞, H∞, u∞, O∞) if there exist a sequence of compact set Uk exhaust-
ing M∞ and a sequence of diffeomorphisms Φk of Uk in M∞ to Mk such
that Φk takes O∞ to Ok and the pull-back (Φ∗kgk,Φ

∗
kHk,Φ

∗
kuk) converge to

(g∞, H∞, u∞) uniformly on compact sets together with all their derivatives in
M∞.

Remark 6.2. The above convergence is the topology of C∞ convergence on
compact sets. If the limit exists, it is unique up to a unique isometry preserving
the origin.

Let injg(O) denote the injectivity radius of the metric g at the point O. For
sequences of manifolds we have the Hamilton’s convergence theorems in [7].

Theorem 6.3 (Hamilton’s compactness for metrics). Let {(Mk, gk, Ok)}k∈N
be a sequence of complete pointed Riemannian manifolds that satisfy

|∇pkRmk|k ≤ Cp on Mk

for all p ≥ 0 and k where Cp <∞ is a sequence of constants independent of k
and

injgk(Ok) ≥ ι0
for some positive constant ι0. Then there exists a subsequence {jk}k∈N such
that {(Mjk , gjk , Ojk)}k∈N converges to a complete manifold (M∞, g∞, O∞) as
k →∞.
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Using above compactness theorems for the fixed metrics (i.e., t = 0), we can
get the compactness theorems for the GRF system on complete manifolds.

Theorem 6.4. Let TA, TO be given such that −∞ ≤ TA < 0 < TO ≤ ∞. Let
{(Mk, gk(t), Hk(t), uk(t), Ok)}k∈N be a sequence of complete pointed solutions
to the GRF system for t ∈ [TA, TO) satisfying

(6.1) sup
Mk

|Rmk|k(t) ≤ C0 for all t ∈ (TA, TO),

(6.2) sup
Mk

|Hk|k(TA) ≤ C ′0 and sup
Mk

|uk|(TA) + sup
Mk

|duk|k(TA) ≤ C ′′0 ,

where C0, C ′0 and C ′′0 are all finite constants independent of k and injgk(0)(Ok)

≥ ι0 for some positive constant ι0. Then there exists a subsequence {jk} such
that {(Mjk , gjk(t), Hjk(t), ujk(t), Ojk)} converges to a complete pointed solution
to the GRF system (M∞, g∞(t), H∞(t), u∞(t), O∞), t ∈ (TA, TO) as k → ∞,
where k ∈ N.

Remark 6.5. Proposition 5.1 and Theorem 5.2 state that uniform bounds on
|Rmk|k and initial bounds on |Hk|k and |uk|+ |duk|k imply uniform bounds on
|Hk|k and |uk| + |duk|k on [TA, TO) on compact sets. Moreover, their bounds
also imply the bounds of all their derivatives (see Theorem 5.6 in Section 5).

To prove Theorem 6.4, in fact we only need to extend the convergence at
one time to convergence at all times. First, we show that the following key
lemma.

Lemma 6.6. Let Mn be a closed manifold with the background metric g, U a
compact subset of M , and (gk(t), Hk(t), uk(t)) a collection of solutions to the
GRF system in neighborhoods of U × [β, ψ], where β < 0 < ψ. At time t = 0
on U , let

(a) cg(V, V ) ≤ gk(V, V ) ≤ Cg(V, V ) for all V ∈ TxM ,

(b) |∇pgk| ≤ Ĉp for all p ≥ 1,

(c) |∇pHk| ≤ Ĉ ′p for all p ≥ 0,

(d) |∇puk| ≤ Ĉ ′′p for all p ≥ 0

and in addition

(e) sup
U×[β,ψ]

|∇pkRmk|k ≤ Cp for all p ≥ 0,

(f) sup
U×[β,ψ]

|∇pkHk|k ≤ C ′p for all p ≥ 0,

(g) sup
U×[β,ψ]

|∇pkuk|k ≤ C ′′p for all p ≥ 0

with constants c, C, Ĉp, Ĉ ′p, Ĉ ′′p , Cp, C ′p, C ′′p independent of k. Then we have

(i) c̃g(V, V ) ≤ gk(t)(V, V ) ≤ C̃g(V, V ),

(ii) sup
U×[β,ψ]

|∇pgk| ≤ C̃p for all p ≥ 1,
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(iii) sup
U×[β,ψ]

|∇pHk| ≤ C̃ ′p for all p ≥ 0,

(iv) sup
U×[β,ψ]

|∇puk| ≤ C̃ ′′p for all p ≥ 0

on any (x, t) ∈ U × [β, ψ], where c̃, C̃, C̃p, C̃ ′p and C̃ ′′p are all independent of k.

Proof. Let V be a vector field on M . For all k, using (e), (f) and (g), we have

∂tgk(t)(V, V ) = −2Rck(t)(V, V ) + 1/2hk(t)(V, V ) + 2αndku(t)dku(t)(V, V )

and

|Rck(t)(V, V )| ≤ C1(n)C0gk(t)(V, V ),

|hk(t)(V, V )| ≤ C2(n)|Hk(t)|2kgk(t)(V, V ) ≤ C2(n)C ′0
2
gk(t)(V, V ),

|dku(t)⊗ dku(t)(V, V )| ≤ |dku(t)|2kgk(t)(V, V ) ≤ C ′′1
2
gk(t)(V, V )

which gives∣∣∣∣∂ log gk(t)(V, V )

∂t

∣∣∣∣ =

∣∣∣∣∣−2Rck(t)(V, V )+hk(t)
2 (V, V )+2αndku(t)dku(t)(V, V )

gk(t)(V, V )

∣∣∣∣∣
≤ A0,

where A0 depends on n, C0, C ′0 and C ′′1 . Throughout the proof of this lemma,
we will let 0 < t < ψ be arbitrary. Then we integrate to obtain

A0ψ ≥
∫ t

0

|∂τ log gk(τ)(V, V )| dτ

≥
∣∣∣∣∫ t

0

∂τ log gk(τ)(V, V )dτ

∣∣∣∣ =

∣∣∣∣log
gk(t)(V, V )

gk(0)(V, V )

∣∣∣∣ .
Hence by the assumption condition (a) we have

c̃g(V, V ) =: C−1e−A0ψg(V, V ) ≤ gk(t)(V, V ) ≤ CeA0ψg(V, V ) := C̃g(V, V ).

This completes the proof of (i).
We observe that the difference Γk − Γ is a tensor. Taking Γ to be fixed in

time, we then get

|∂t(Γk − Γ)|k ≤ C(n) · [|∇k(Rck)|k + |∇k(hk)|k + |∇k(duk ⊗ duk)|k]

≤ C(n)C1 + 2C(n)|∇k(Hk)|k · |Hk|k + 2C(n)|∇2
k(uk)|k · |duk|k

≤ C(n)C1 + 2C(n)C ′1C
′
0 + 2C(n)C ′′2C

′′
1 := A1.

Since ∇gk ' Γk(t)− Γ ' ∇k(t)−∇, we deduce

|∂t∇gk(t)| ≤ c(n) |∂t (Γk(t)− Γ)| ≤ c(n)C ′ |∂t (Γk(t)− Γ)|k ≤ c(n)C ′A1,
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where constant C ′ comes from (i) which is already proven. Integrating again
yields

|∇gk(t)| =
∣∣∣∣∇gk(0) +

∫ t

0

∂τ∇gk(τ)dτ

∣∣∣∣
≤ |∇gk(0)|+ c(n)C ′A1ψ ≤ Ĉ1 + c(n)C ′A1ψ := C̃1.

Now we consider |Hk(t)|. By (f) and (i), we have

|Hk(t)| ≤ C̄ · |Hk(t)|k ≤ C̄ · C ′0 := C̃ ′0,

where C̄ is determined by (i). We also notice that | · | = | · |k on functions.
Therefore by (g)

|uk(t)| = |uk(t)|k ≤ C ′′0 := C̃ ′′0 .

Using the fact that ∇ is independent of time, we have

∂t∇Hk = ∇∂tHk = ∇ [∆kHk +Rmk ∗Hk]

= (∇−∇k)∆kHk +∇k∆kHk +∇Rmk ∗Hk +Rmk ∗ ∇Hk

= ∇gk ∗∆kHk +∇k∆kHk + (∇−∇k)Rmk ∗Hk +∇kRmk ∗Hk

+Rmk ∗ (∇−∇k)Hk +Rmk ∗ ∇kHk

= ∇gk ∗∆kHk +∇k∆kHk +∇gk ∗Rmk ∗Hk +∇kRmk ∗Hk

+Rmk ∗ ∇gk ∗Hk +Rmk ∗ ∇kHk,

where we used ∇gk ' ∇k − ∇. Then by (e), (f), (i) and (ii) for p = 1, the
above equation implies

|∂t∇Hk| ≤ C|∇gk| · |∆kHk|+ C|∇k∆kHk|+ C|∇gk| · |Rmk| · |Hk|
+ C|∇kRmk| · |Hk|+ |Rmk| · |∇kHk| ≤ B1.

As above,

|∇Hk(t)| ≤ |∇Hk(0)|+
∫ t

0

|∂τ∇Hk(τ)| dτ ≤ Ĉ ′1 +B1ψ := C̃ ′1.

Similarly using (g) and (i), we calculate for the differential:

|∇uk(t)| = |duk(t)| = |∇kuk(t)| ≤ C̄ · |∇kuk(t)|k ≤ C̄ · C ′′1 := C̃ ′′1 .

We can estimate |∇2uk(t)| by the estimate |∇gk(t)|. Since

∂t∇2uk = ∇2∆kuk = (∇−∇k)d(∆kuk) +∇kd(∆kuk)

= ∇gk ∗ ∇k∆kuk +∇2
k(∆kuk),

using (g), (i) and (ii) for p = 1, we have∣∣∂t∇2uk
∣∣ ≤ C|∇gk| · |∇k∆kuk|+ C|∇2

k(∆kuk)| ≤ D2.

Using (d), an integration gives

|∇2uk(t)| ≤ |∇2uk(0)|+
∫ t

0

∣∣∂τ∇2uk(τ)
∣∣ dτ ≤ Ĉ ′′2 +D2ψ := C̃ ′′2 .
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Higher derivatives of (gk, Hk, uk) with respect to g can be estimated in pairs
(∇pgk,∇pHk,∇p+1uk) for all p ≥ 2. The technique is similar for all p ≥ 2, so
we only state the case p = 2 as reference. Note that

(6.3)
∂t∇2gk = ∇2 (−2Rck + 1/2hk + 2αnduk ⊗ duk)

= ∇2Rck+Hk∗∇2Hk+∇Hk∗∇Hk+∇3uk⊗∇uk+∇2uk⊗∇2uk.

We can rewrite some of these terms to be
(6.4)
∇2Rck = (∇−∇k)∇Rck+∇k(∇−∇k)Rck+∇2

kRck

= ∇gk ∗ [(∇−∇k)Rck +∇kRck] +∇k(∇gk ∗Rck) +∇2
kRck

= ∇gk∗ [∇gk∗Rck+∇kRck] +∇k∇gk∗Rck+∇gk∗∇kRck+∇2
kRck

= ∇gk∗ [∇gk∗Rck +∇kRck] +∇2gk∗Rck +∇2
kRck,

where in the last equality we used

(6.5) ∇k∇gk = ∇2gk + (∇k −∇)∇gk = ∇2gk +∇gk ∗ ∇gk.

Substituting (6.4) into (6.3), we have

(6.6)

∣∣∂t∇2gk
∣∣ ≤ C(n)C̄C0|∇2gk|+ C(n)C̄C ′0|∇2Hk|+ C̃ ′′1 |∇3uk|

+ (C̃ ′1)2 + (C̃ ′′2 )2 + C(n)C̄
[
C̃2

1C0 + C̃1C1 + C2
2

]
≤ Â2

[
|∇2gk|+ |∇2Hk|+ |∇3uk|

]
+ C,

where we used (a)-(g) and (i)-(iv) for the case p = 0, 1.
Doing the same calculation for ∇2Hk, we have

∂t∇2Hk = ∇2[∆kHk +Rmk ∗Hk]

= (∇−∇k)∇∆kHk+∇k(∇−∇k)∆kHk+∇2
k∆kHk

+∇2Rmk ∗Hk +Rmk ∗ ∇2Hk +∇Rmk ∗ ∇Hk

= ∇gk∗[(∇−∇k)∆kHk+∇k∆kHk]+∇k(∇gk∗∆kHk)+∇2
k∆kHk

+∇2Rmk∗Hk+Rmk∗∇2Hk+(∇−∇k)Rmk∗∇Hk+∇kRmk∗∇Hk

= ∇gk∗[∇gk∗∆kHk+∇k∆kHk]+∇k(∇gk∗∆kHk)+∇2
k∆kHk

+∇2Rmk∗Hk+Rmk∗∇2Hk+∇gk∗Rmk∗∇Hk+∇kRmk∗∇Hk.

Therefore following the arguments above, we get:

(6.7)
∣∣∂t∇2Hk

∣∣ ≤ Ā2

[
|∇2gk|+ |∇2Hk|

]
+ C,

where we still used (6.5), (a)-(g) and (i)-(iv) for the case p = 0, 1.
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Compute the evolution equation of ∇3u, we have

∂t∇3uk = (∇−∇k)∇d∆kuk+∇k(∇−∇k)d∆kuk+∇2
kd∆kuk

= ∇gk∗
[
(∇−∇k)d∆kuk+∇2

k∆kuk
]

+∇k(∇gk∗d∆kuk)+∇2
kd∆kuk

= ∇gk∗∇gk∗∇k∆kuk+∇gk∗∇2
k∆kuk

+∇2gk∗∇k∆kuk+∇gk∗∇gk∗∇k∆kuk+∇3
k∆kuk.

This leads to the estimate

(6.8)
∣∣∂t∇3uk

∣∣ ≤ Ã2|∇2gk|+ C.

Putting (6.6), (6.7) and (6.8) together and realizing that | · | is independent of
time, we arrive at∣∣∂t (∣∣∇2gk

∣∣+
∣∣∇2Hk

∣∣+
∣∣∇3uk

∣∣)∣∣ ≤ A [|∇2gk|+ |∇2Hk|+ |∇3uk|
]

+ C.

Since |∇2gk(0)| + |∇2Hk(0)| + |∇3uk(0)| ≤ Ĉ2 + Ĉ ′2 + Ĉ ′′3 , which is bounded,
we can integrate in time to obtain

(6.9) |∇2gk(t)|+ |∇2Hk(t)|+ |∇3uk(t)| ≤ C̃2 + C̃ ′2 + C̃ ′′′3 .

Hence we have estimated in pairs (∇pgk,∇pHk,∇p+1uk) for all p = 2.

We would like to derive some recursion formulas for higher derivatives.

(6.10)

∂t∇pgk = ∇p (−2Rck + 1/2hk + 2αnduk ⊗ duk)

= ∇pRck+

p∑
i=1

∇iHk∗∇p−iHk+

p∑
i=1

∇1+iuk∗∇1+p−iuk.

If the estimates hold for p < N with N ≥ 2, then we shall estimate them for
p = N . First we have

(6.11)

∣∣∇NRck(t)
∣∣ =

∣∣∣ N∑
i=1

∇N−i(∇−∇k)∇i−1Rck +∇Nk Rck
∣∣∣

≤
N∑
i=1

∣∣∇N−i(∇−∇k)∇i−1Rck
∣∣+
∣∣∇Nk Rck∣∣ .

Note that we can rewrite ∇−∇k = Γ−Γk as a sum of terms of the form ∇gk.
When i = 1, we can bound

∣∣∇N−1(∇−∇k)Rck
∣∣ by a sum of terms of the

form
∣∣∇N−jgk∣∣ · ∣∣∇jRck∣∣, 0 ≤ j ≤ N − 1.

When 2 ≤ i ≤ N , we can bound
∣∣∇N−i(∇−∇k)∇i−1

k Rck
∣∣ by a sum of

terms of the form
∣∣∇N−i−j+1gk| · |∇j∇i−1Rck

∣∣, 0 ≤ j ≤ N − i. Furthermore,

we can also bound
∣∣∇j∇i−1Rck

∣∣ =
∣∣((∇−∇k) +∇k)j∇i−1Rck

∣∣ by a sum of

terms which are products of
∣∣∇`+i−1

k Rck
∣∣, 0 ≤ ` ≤ j, and |∇`gk|, 1 ≤ ` ≤ j.

Hence by the assumption of Lemma 6.6, the induction assumption and the
equivalence of | · | and | · |k, we get from (6.11)

|∇NRck(t)| ≤ C ′N |∇Ngk|+ C ′′N .
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By induction, we have that |∇pHk| and |∇puk| bounded for all p < N . This
allows us to estimate from (6.10)

(6.12)

∣∣∂t∇Ngk∣∣ ≤ C ′N |∇Ngk|+ C ′′N |∇NHk|+ +C ′′′N |∇N+1uk|+ C

≤ ÂN
[
|∇Ngk|+ |∇NHk|+ |∇N+1uk|

]
+ C.

Doing the same calculation for ∇pHk, we have

(6.13) ∂t∇pHk = ∇p [∆kHk +Rmk ∗Hk] = ∇p∆kHk+

p∑
i=1

∇iRmk∗∇p−iHk.

We assume the cases hold for all p < N with N ≥ 2, then we shall estimate
them for p = N . As above, in the right hand side of (6.13), we find

|∇N∆kHk| ≤ Ĉ ′N |∇Ngk|+ Ĉ ′′N , |∇NRmk(t)| ≤ Ĉ ′N |∇Ngk|+ Ĉ ′′N

and the others are bounded by induction.
Hence from (6.13), we get

(6.14)
∣∣∂t∇NHk

∣∣ ≤ ĀN [|∇Ngk|+ |∇NHk|
]

+ C.

Compute the evolution equation for ∇p+1u, we have

∂t∇N+1uk = ∇k(∆kuk) ∗ ∇Ngk +

N+1∑
i=2

∇ik(∆kuk) ∗ P (∇0gk, . . . ,∇N+1−igk)

+∇k(∆kuk) ∗ P (∇0gk, . . . ,∇N−1gk),

where N ≥ 2 and P is a polynomial in the components of the derivatives of gk
of the designated order. We have the following estimate by induction.

(6.15)
∣∣∂t∇N+1uk

∣∣ ≤ ÃN |∇Ngk|+ C.

Combining (6.12), (6.14) and (6.15), we have∣∣∂t (∣∣∇Ngk∣∣+∣∣∇NHk

∣∣+∣∣∇N+1uk
∣∣)∣∣ ≤ A [|∇Ngk|+|∇NHk|+|∇N+1uk|

]
+ C.

Note that at time t = 0, |∇Ngk| + |∇NHk| + |∇N+1uk| is bounded by the
assumption of Lemma 6.6. Then we integrate in time to give this quantity
bounded for all time. Hence this finishes the proof of the lemma. �

Now we use Theorem 6.3 and Lemma 6.6 to prove Theorem 6.4.

Proof of Theorem 6.4. We want to use the convergence theorem as stated in
Theorem 6.3. Assume for the proof that TA, TO <∞. We also assume that the
injectivity radius is bounded below by some positive constant at time t = 0.
Using Proposition 5.1, Theorem 5.2, Theorem 5.4 and Corollary 5.6, the as-
sumptions (6.1) and (6.2) of Theorem 6.4 imply that their uniform bounds and
uniform bounds on all derivatives of Rmk(t), Hk(t) and uk(t) on all compact
sets; namely,

(6.16) |Hk|k + |uk|+ |duk|k ≤ C(n,C0, C
′
0, C

′′
0 , T )



A GENERAL RICCI FLOW SYSTEM 291

and

(6.17) |∇m−1
k Rmk|k + |∇mk Hk|k + |∇m+1

k uk|k ≤ Cm(n,m,C0, C
′
0, C

′′
0 , T )

for all m ≥ 1, where C and Cm are both independent of k. Now we apply
Theorem 6.3 to get a convergent subsequence of (Mk, gk(0), xk), also denoted
(Mk, gk(0), xk), at time t = 0 to a limit (M∞, h, x∞) in the sense of Definition
6.1, i.e.,

(6.18) lim
k→∞

|∇mh (Φ∗kgk(0))−∇mh h|h = 0 for all m ≥ 0.

We will apply Lemma 6.6 at time t = 0, h as the background metric, and
Φ∗kgk(t), Φ∗kHk(t) and Φ∗kuk(t), t ∈ (TA, TO) as the sequence. Let [β, ψ] ⊂
(TA, TO), 0 ∈ [β, ψ], and U ⊂ M∞ be compact. Since we have convergence of
Φ∗kgk(0) to the limit metric h at t = 0, the following is true:

(a) Φ∗kgk(0) is equivalent to h on U , that is, ch ≤ Φ∗kgk(0) ≤ Ch holds for
all k big enough and some constants c and C independent of k.

(b) The covariant derivatives of Φ∗kgk(0) with respect to h are uniformly

bounded on U × {0}. From (6.18) we have |∇mh (Φ∗kgk(0))|h ≤ Ĉm for
all m ≥ 1 independent of k.

(c) By assumption and the equivalence of metrics, by (6.16), |Φ∗kHk(0)|h ≤
C|Hk(0)|k ≤ Ĉ ′0. Moreover for m ≥ 1, we can use the equivalence of
metrics and the fact that ∇mΦ∗

kgk(0) → ∇
m
h at t = 0 to obtain

|∇mh (Φ∗kHk(0))|h ≤ C|∇mh (Φ∗kHk(0))|Φ∗
kgk(0)

≤ C|∇mΦ∗
kgk(0)(Φ

∗
kHk(0))|Φ∗

kgk(0) ≤ C|∇mk (Hk(0))|k ≤ Ĉ ′m

for k big enough independent of k, where in the last line we used (6.17).

(d) Using the similar method of (c), we can obtain |∇mh (Φ∗kuk(0))|h ≤ Ĉ ′′m
for k big enough independent of k, where m ≥ 0.

And in addition (6.16) and (6.17) imply (e), (f) and (g) in Lemma 6.6 are
satisfied.

This allow us to apply Lemma 6.6. Then we have

(i) c̃h ≤ Φ∗kgk(t) ≤ C̃h on U × [β, ψ],

(ii) sup
U×[β,ψ]

|∇mh Φ∗kgk(t)|h ≤ C̃m for all m ≥ 1,

(iii) sup
U×[β,ψ]

|∇mh Φ∗kHk(t)|h ≤ C̃ ′m for all m ≥ 0,

(iv) sup
U×[β,ψ]

|∇mh Φ∗kuk(t)|h ≤ C̃ ′′m for all m ≥ 0,

where c̃, C̃, C̃m, C̃ ′m and C̃ ′′m are all independent of k.
At last by Arzela-Ascoli theorem, we find a subsequence converging uni-

formly on every compact subset of M∞ × (TA, TO). In addition the limit
g∞(t) := limk→∞ Φ∗kgk(t) agrees at time t = 0 with h since it already con-
verged there by construction. Let H∞(t) := Φ∗kHk(t) and u∞(t) := Φ∗kuk(t).



292 J.-Y. WU

Since the convergence is smooth and taking the limit commutes with all deriva-
tives, we see that {g∞(t), H∞(t), u∞(t), O∞(t)} is also a solution of the GRF
system (1.1) and it satisfies the same bounds on derivatives and the injectivity
radius. This finishes the proof of Theorem 6.4. �
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