• Title/Summary/Keyword: Islet

Search Result 208, Processing Time 0.026 seconds

Protective Effect of Radix Clematidis Extract on Streptozotocin-induced Diabetes (Streptozotocin 유도 당뇨병에 대한 위령선(威靈仙) 추출물의 방어 효과)

  • Ham, Kyung-Wan;Kim, Eun-Kyung;Song, Mi-Young;Kwon, Kang-Beom;Song, Je-Ho;Seo, Eun-A;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.580-584
    • /
    • 2008
  • In the present study, Radix clematidis extract (RCE) was evaluated to determine if it could protect pancreatic ${\beta}$ cells against multiple low dose streptozotocin (MLDS)-induced diabetes. Injection of mice with MLDS resulted in hyperglycemia and hypoinsulinemia, which was confirmed by immunohistochemical staining. However, the induction of diabetes by MLDS was completely prevented when mice were pre-administrated with RCE. Generation of oxidative stress is implicated in MLDS, a ${\beta}$ cell specific toxin-induced islet cell death. In this context, to elucidate the mechanisms of protective effects in RCE pre-administrated diabetic mice, we investigated the expression of heme oxygenase-1 (HO-1), which is one of the anti-oxidant enzymes. MLDS-induced HO-1 expressions were significantly reduced in MLDS-treated mice. However, the decrease of HO-1 by MLDS were protected by pretreatment of RCE. The molecular mechanism by which RCE inhibits diabetic conditions by MLDS appears to involve inhibition of HO-1 expression. Taken together, these results reveal the possible therapeutic value of RCE for the prevention of type 1 diabetes progression.

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun;Heo, Sungeun;Han, Ji Hye;Lee, Eun-young;Kulkarni, Rohit N.;Kim, Wook
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.909-916
    • /
    • 2018
  • In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

Anti-Diabetic Studies of Mass Cultured Mycelia from Ganoderma applanatum in db/db Mice and Human (잔나비걸상버섯(Ganoderma applanatum) 균사체의 db/db Mice 및 인체에서의 항당뇨 효능연구)

  • Kim, Kap-Ho;Son, Dalhoon;Lee, Joon-Seok;Lee, Jeong-Woon;Kim, Hak-Soo;Lee, Jae-Hyen;Lee, Moon-Cheol;Kim, Namsik;Song, Si-Whan
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.366-374
    • /
    • 2013
  • Anti-diabetic activities of cultured mycelia from Ganoderma applanatum are being evaluated in this study. The OGTT and 4-weeks of repeated oral efficacy tests are conducted in mice at the doses of 0 (vehicle treatment), 25, 75 and 225 mg/kg/day, respectively. In human study, the test article was administered orally every day for 8-week at a dose of 1,500 mg/kg, tid and placebo group. The blood glucose levels (BGL) at 0.5 hour after treatment are significant decreased in all treatment groups of OGTT test. In the 4-week test, BGL of 75 and 225 mg/kg/day group is continuously decreased during all treatment periods and the BGL of 25 mg/kg/day group show decreasing trends at the final week, the pancreas weight of all treatment groups are being increased, and the Langerhans-islet numbers were increased at all treatment groups with a dose-response manner. There are no test article-related abnormal signs and the fasted blood glucose (FBG), postprandial blood glucose (PPG) and HbA1c are decreased significantly after 8-week treatments. These results that the cultured mycelia from Ganoderma applanatum could decrease BGL by protecting the degeneration of Langerhans islets.

Geographic Genetic Contour of A Leaf Beetle, Chrysolina aurichalcea (Coleoptera: Chysomelidae), on the Basis of Mitochondrial COI Gene and Nuclear ITS2 Sequences

  • Park, Joong-Won;Park, Sun-Young;Wang, Ah-Rha;Kim, Min-Jee;Park, Hae-Chul;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.1
    • /
    • pp.155-166
    • /
    • 2011
  • The leaf beetle, $Chrysolina$ $aurichalcea$ (Coleoptera: Chysomelidae), is a pest damaging plants of Compositae. In order to understand the genetic diversity and geographic variation we sequenced a portion of mitochondrial COI gene (658 bp) and complete nuclear internal transcribed spacer 2 (ITS2) of the species collected from seven Korean localities. A total of 17 haplotypes (CACOI01~CACOI17), with the maximum sequence divergence of 3.04% (20 bp) were obtained from COI gene sequence, whereas 16 sequence types (ITS2CA01~ITS2CA16), with the maximum sequence divergence of 2.013% (9 bp) were obtained from ITS2, indicating substantially larger sequence divergence in COI gene sequence. Phylogenetically, the COI gene provided two haplotype groups with a high nodal support (${\geq}87%$), whereas ITS2 provided only one sequence type group with a high nodal support (${\geq}92%$). The result of COI gene sequence may suggest the presence of historical biogeographic barriers that bolstered genetic subdivision in the species. Different grouping pattern between COI gene and ITS2 sequences were interpreted in terms of recent dispersal, reflected in the ITS2 sequence. Finding of unique haplotypes and sequence types only from Beakryeng-Islet population was interpreted as an intact remnant of ancient polymorphism. As more samples are analyzed using further hyper-variable marker, further fruitful inference on the geographic contour of the species might be available.

Fermentation Increases Antidiabetic Effects of Acanthopanax Senticosusbhpark@chonbuk.ac.kr (발효에 의한 오가피의 항당뇨 활성 촉진)

  • Ham, Seong-Ho;Lim, Byung-Lak;Yu, Jia-hua;Ka, Sun-O;Park, Byung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.340-345
    • /
    • 2008
  • Extract of Acanthopanax senticosus has recently been demonstrated to possess significant antidiabetic potential, in accordance with the traditional use of this plant as an antidiabetic natural health product. The present study evaluated the effects of fermented extract (FE) of this plant on glucose-stimulated insulin secretion, glucose uptake, and streptozotocin-induced type 1 diabetes model. A 3 h pretreatment with FE prevented $IL-1{\beta}$ and $IFN-{\gamma}$ toxicity in isolated rat islets. However, it did not affect insulin-stimulated glucose uptake in C2C12 myotubes. In addition, pretreatment of mice with FE blocked the destruction of streptozotocin-induced islets and the development of type 1 diabetes. FE reduced blood glucose level, increased insulin secretion, and improved glucose tolerance in streptozotocin-treated mice, whereas nonfermented extract (NFE) had moderate effects. Immunohistochemical staining for insulin clearly showed that pretreatment with FE blocked the STZ-induced islets destruction and restored the number of islet cells that secreted insulin to the level of the control. Although the active principles and their mechanisms of action remain to be identified, FE may nevertheless represent a novel complementary therapy and a source of novel therapeutic agents against type 1 diabetes mellitus.

Immunohistochemical study on the gastro-entero-pancreatic(GEP) endocrine cells of the blue fox, Alopex lagopus (북극여우의 위장췌 내분비세포에 관한 면역조직화학적 연구)

  • Lee, Jae-hyun;Lee, Hyeung-sik
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.369-379
    • /
    • 1993
  • The regional distribution and the relative frequencies of endocrine cells were studied in nine portions of the blue fox GI tract, and the distribution pattern and cell types of the pancreatic endocrine cells were also studied in the pancreas by immunohistochemical method. Six kinds of immunoreactive cells were identified in the GI tract, and four kinds of immunoreactive cells were also identified in the pancreas. Although numerous 5-HT- and somatostatin-immunoreactive cells were seen throughtout the GI tract, somatostatin-immunoreactive cells were a few in the intestine. Very numerous Gas/CCK-immunoreactive cells were restricted generally in the pyloric region and duodenum. Numerous glucagon-immunoreactive cells were found in the stomach except the pyloric region, and generally a few in the intestine. Moderate number of BPP-immunoreactive cells were found in the stomach except the pyloric region, and a few in the large intestine. Numerous porcine CG-immunoreactive cells were restricted to the cardiac and fundic region. In the pancreas, four types of pancreatic endocrine cells-somatostatin-, glucagon-, BPP- and insuline-immunoreactive-were identified in the pancreatic islet and exocrine portion. These results suggest that the regional distribution, the relative frequencies and cell types of the GEP endocrine cells in the GI tract and pancreas varies considerably among the species.

  • PDF

Immunohistochemistry of the Pancreatic Endocrine Cells of the Red-eared Slider (Trachemys scripta elegans)

  • Ku, Sae-Kwang;Lee, Hyeung-Sik;Lee, Jae-Hyun;Park, Ki-Dae
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.187-193
    • /
    • 2000
  • Regional distribution and relative frequency of endocrine cells in the pancreas of the red-eared slider, Trachemys scripta elegans, were investigated by immunohistochemical methods. Chromogranin (Cg) A-, serotonin-, insulin-, glucagon-, somatostatin-, bovine pancreatic polypeptide (BPP)- and human pancreatic polypeptede (HPP)-immunoreactive cells were identified in this study. Most of immunoreactive cells in the exocrine and endocrine pancreas (Langerhans islet) were generally spherical or spindle-shaped (open-typed cell), while occasionally cells round in shape (close-typed cell) were found in the basal portion or interepithelial regions of the pancreatic duct. These immunoreactive cells were located in the exocrine, endocrine pancreas and/or basal or interepithelial portion of the pancreatic duct. Serotonin-immunoreactive cells were found in the basal portion of epithelia of the pancreatic duct at a low frequency and interacinar region of the exocrine at a moderate frequency. Insulin-immunoreactive cells were found in the central portion of the endocrine pancreas, interacinar regions of the exocrine pancreas and basal portion of the epithelia of the pancreatic duct at high, moderate and low frequencies, respectively. Glucagon-immunoreactive cells were detected in the periphery of the endocrine pancreas, interacinar region of the exocrine pancreas and basal portion of the epithelia or interepithelia of the pancreatic duct at high, moderate and moderate frequencies, respectively. Somatostatin-immunoreactive cells were dispersed in the whole area of the endocrine pancreas, interacinar regions of exocrine pancreas and basal portion of the epithelia or interepithelia of the pancreatic duct at a moderate frequency. BPP- and HPP-immunoreactive cells were detected in the iinteracinar region of the exocrine pancreas at moderate and hige frequencies, respectively. However, no Cg A- and motilin-immunoreactive cells were detected in this study.

  • PDF

Anti-diabetic Effect and Mechanism of Korean Red Ginseng in C57BL/KsJ db/db Mice

  • Yuan, Hai-Dan;Shin, Eun-Jung;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.187-193
    • /
    • 2008
  • The present study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. The db/db mice were divided into three groups: diabetic control group (DC), Korean red ginseng group (KRG, 100 mg/kg) and metformin group (MET, 300 mg/kg), and treated with drugs once per day for 10 weeks. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in KRG-, 67.7% in MET-treated group. With decreased plasma glucose and insulin levels, the insulin resistance index of the KRG-treated group was reduced by 27.6% compared to the DC group. The HbA1c levels in KRG and MET-treated groups were also decreased by 11.0% and 18.9% compared to that of DC group, respectively. Plasma triglyceride and non-esterified fatty acid levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the KRG-treated group compared to those in DC group. Histological analyses of the liver and fat tissue of mice treated with KRG revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the DC group. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin contents, but decreased glucagon production. To elucidate action mechanism of KRG, effects on AMP-activated protein kinase (AMPK) and its downstream target proteins responsible for fatty acid oxidation and gluconeogenesis were explored in the liver. KRG activated AMPK and acetyl-coA carboxylase (ACC) phosphorylations, resulting in stimulation of fatty acid oxidation. KRG also caused to down regulation of SREBP1a and its target gene expressions such as FAS, SCD1 and GPAT. In summary, our results suggest that KRG exerted the anti-diabetic effect through AMPK activation in the liver of db/db mice.

Dietary Ascorbate Supplementation Reduces Oxidative Tissue Damage and Expression of iNOS in the Kidney of Streptozotocin Induced Diabetic Rats

  • Choi, Myung-Seoup;Jang, Yoon-Young;Lee, Woo-Seung;Song, Jin-Ho;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • Reactive oxygen species (ROS) have been suggested to be contributory factors in complications of diabetes mellitus. In the present study, we investigated the generation of superoxide, the lipid peroxide level measured as thiobarbituric acid reactive substances, the vasorelaxation of isolated thoracic aorta and the iNOS expression in kidney of streptozotocin induced diabetic rats. Sprague Dawley rats were divided into four groups: control, ascorbate (400 mg/kg rat weight daily in drinking water), diabetic (single dose of 50 mg of STZ/kg i.p.) and diabetic simultaneously fed with ascorbate for 12 wk. Rats in groups were studied at tri-weekly intervals (0 to 12 wk). Diabetic rats were evaluated periodically with changes of plasma glucose levels and body weight. The ascorbate supplimentation attenuated the development of hyperglycemia and weight loss induced by STZ injection in rats. In the present experimental condition, the ascorbate supplimentation had no significant effect on plasma glucose levels and changes in body weight of normal rate. The superoxide generation, formation of thiobarbituric acid reactive substance and iNOS expression in kidney were significantly increased in STZ-treated rats that were decreased by ascorbate supplimentation. The ascorbate supplimentation had no effect on vasorelaxation of isolated thoracic aorta. These results indicate that ascorbate supplimentation may exert an inhibitory effect on STZ-induced oxidative tissue damage through protection of pancreatic islet cells by scavanging reactive oxygen species. The ascorbate supplimentation may possibly attenuate the renal complication of diabetes mellitus.

Prevention of Diabetes Using Adenoviral Mediated Hepatocyte Growth Factor Gene Transfer in Mice

  • Lee, Hye-Jeong;Kim, Hyun-Jeong;Roh, Mee-Sook;Lee, Jae-Ik;Lee, Sung-Won;Jung, Dong-Sik;Kim, Duk-Kyu;Park, Mi-Kyoung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.261-266
    • /
    • 2003
  • Type 1 diabetes is an organ-specific autoimmune disease caused by the cytotoxic T cells-mediated destruction of the insulin-producing beta cells in the Langerhans pancreatic islets. Hepatocyte growth factor (HGF) is a potent mitogen and a promoter of proliferation of insulin producing beta cells of pancreatic islets. To study the role of HGF via viral vector in the development of streptozotocin (STZ)-induced diabetes in mice, we have developed an adenoviral vector genetically engineered to carry the gene for human HGF (hHGF) and evaluate the change of blood glucose, insulin level, and insulin-secreting beta cells of pancreatic islets. We demonstrate that the treatment with hHGF gene prevented the development of STZ-induced diabetes and increased serum insulin level to above normal range. Furthermore, it preserved pancreatic beta cells from destruction. These in vivo results may support previous findings that HGF is insulinotropic agent for beta cells and HGF treatment renders the cells to be resistant to the development of diabetes from STZ administration. We suggest that an adenoviral mediated hHGF gene therapy is a good candidate for the prevention and treatment of type 1 diabetes.