Protective Effect of Radix Clematidis Extract on Streptozotocin-induced Diabetes

Streptozotocin 유도 당뇨병에 대한 위령선(威靈仙) 추출물의 방어 효과

  • Ham, Kyung-Wan (Department of Physiology, College of Oriental Medicine, Wonkwang University) ;
  • Kim, Eun-Kyung (Department of Biochemistry, Medical School and Institute for Medical Sciences, Chonbuk National University) ;
  • Song, Mi-Young (Department of Biochemistry, Medical School and Institute for Medical Sciences, Chonbuk National University) ;
  • Kwon, Kang-Beom (Department of Physiology, College of Oriental Medicine, Wonkwang University) ;
  • Song, Je-Ho (Division of Beauty Design & Institute for Better Living, Wonkwang University) ;
  • Seo, Eun-A (Department of Food and Nutrition, School of Human Envioronmental Science, Wonkwang University) ;
  • Ryu, Do-Gon (Department of Physiology, College of Oriental Medicine, Wonkwang University)
  • 함경완 (원광대학교 한의과대학 한방생리학교실) ;
  • 김은경 (전북대학교 의과대학 생화학교실) ;
  • 송미영 (전북대학교 의과대학 생화학교실) ;
  • 권강범 (원광대학교 한의과대학 한방생리학교실) ;
  • 송제호 (원광대학교 생활과학대학 뷰티디자인학부 생활자원개발연구소) ;
  • 서은아 (식품영양학과) ;
  • 류도곤 (원광대학교 한의과대학 한방생리학교실)
  • Published : 2008.06.25

Abstract

In the present study, Radix clematidis extract (RCE) was evaluated to determine if it could protect pancreatic ${\beta}$ cells against multiple low dose streptozotocin (MLDS)-induced diabetes. Injection of mice with MLDS resulted in hyperglycemia and hypoinsulinemia, which was confirmed by immunohistochemical staining. However, the induction of diabetes by MLDS was completely prevented when mice were pre-administrated with RCE. Generation of oxidative stress is implicated in MLDS, a ${\beta}$ cell specific toxin-induced islet cell death. In this context, to elucidate the mechanisms of protective effects in RCE pre-administrated diabetic mice, we investigated the expression of heme oxygenase-1 (HO-1), which is one of the anti-oxidant enzymes. MLDS-induced HO-1 expressions were significantly reduced in MLDS-treated mice. However, the decrease of HO-1 by MLDS were protected by pretreatment of RCE. The molecular mechanism by which RCE inhibits diabetic conditions by MLDS appears to involve inhibition of HO-1 expression. Taken together, these results reveal the possible therapeutic value of RCE for the prevention of type 1 diabetes progression.

Keywords

References

  1. 申佶求. 申氏本草學. 서울, 壽文社, pp 275-277, 1982
  2. 辛民敎. 原色臨床本草學. 서울, 永林出版社, pp 508-509, 1986
  3. 李尙仁. 本草學. 서울, 修書院, pp 226-227, 1981
  4. 全國韓醫科大學 本草學敎室 共編. 本草學. 서울, 永林社, pp 204-205, 1991
  5. 江蘇新醫學院編. 中藥大辭典. 上海, 上海科學技術出版社, pp 1632-1635
  6. Bach, J.F. Insulin-dependent diabetes mellitus as a $\beta$-cell targeted disease of immunoregulation. Journal of Autoimmunity 8(4):39-63, 1995
  7. Wohler, F., Liebig, J. Untersuchungen uber die Natur der Harnsaure. [Investigations on the nature of uric acid]. Ann Pharm 26: 241-240, 1838 https://doi.org/10.1002/jlac.18380260302
  8. Dunn, J.S., McLetchie, N.G.B. Experimental alloxan diabetes in the rat. Lancet 245: 384-387, 1943
  9. Dunn, J.S., Sheehan, H.L., McLetchie, N.G.B. Necrosis of islets of Langerhans produced experimentally. Lancet 244: 484-487, 1943 https://doi.org/10.1016/S0140-6736(00)45317-1
  10. Rakieten, N., Rakieten, M.L., Nadkarni, M.V. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep. 29: 91-98, 1963
  11. 장승욱, 김연섭. 白屈菜.木果.威靈仙 혼합 약침액이 관절염 白鼠의 염증과 肝에 미치는 영향. 동의생리병리학회지 18(2):484-489, 2004
  12. 장준혁, 김갑성, 김철호. 黃柏 및 威靈仙藥鍼이 Lipopolysaccharide 유발관절염의 IL-1$\beta$ 발현 억제에 미치는 영향. The Journal of Korea Acupuncture & Moxibustion Society 13(1):511-533, 1999
  13. 장현석, 한상원, 최종백. 威靈仙水鍼이 痛風誘發 흰쥐의 병리적 소견에 미치는 영향. 대한침구학회지 11(1):485-498, 1994
  14. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analasis Biochememistry 72: 248-254, 1976 https://doi.org/10.1016/0003-2697(76)90527-3
  15. Kataoka, S., Satoh, J., Fujiya, H., Toyota, T., Suzuki, R., Itoh, K., Kumagai, K. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes 32(3):247-253, 1983 https://doi.org/10.2337/diabetes.32.3.247
  16. Like, A.A., Rossini, A.A., Guberski, D.L., Appel, M.C., Williams, R.M. Spontaneous diabetes mellitus: reversal and prevention in the BB/W rat with antiserum to rat lymphocytes. Science. 206(4425):1421-1423, 1979 https://doi.org/10.1126/science.388619
  17. Paik, S.G., Blue, M.L., Fleischer, N., Shin, S. Diabetes susceptibility of BALB/cBOM mice treated with streptozotocin. Inhibition by lethal irradiation and restoration by splenic lymphocytes. Diabetes 31(9):808-815, 1982 https://doi.org/10.2337/diabetes.31.9.808
  18. Sandler, S., Andersson, A.K., Barbu, A., Hellerstrom, C., Holstad, M., Karlsson, E., Sandberg, J.O., Strandell, E., Saldeen, J., Sternesjo, J., Tillmar, L., Eizirik, D.L., Flodstrom, M., Welsh, N. Novel experimental strategies to prevent the development of type 1 diabetes mellitus. Ups J Med Sci 105(2):17-34, 2000
  19. Shewade, Y., Tirth, S., Bhonde, R.R. Pancreatic islet-cell viability, functionality and oxidative status remain unaffected at pharmacological concentrations of commonly used antibiotics in vitro. J Biosci. 26(3):349-355, 2001 https://doi.org/10.1007/BF02703744
  20. LeDoux, S.P., Woodley, S.E., Patton, N.J., Wilson, G.L. Mechanisms of nitrosourea-induced beta-cell damage. Alterations in DNA. Diabetes 35(8):866-872, 1986 https://doi.org/10.2337/diabetes.35.8.866
  21. Wilson, G.L., Hartig, P.C., Patton, N.J., LeDoux, S.P. Mechanisms of nitrosourea-induced beta-cell damage. Activation of poly (ADP-ribose) synthetase and cellular distribution. Diabetes 37(2):213-216, 1988 https://doi.org/10.2337/diabetes.37.2.213
  22. Konrad, R.J., Kudlow, J.E. The role of O-linked protein glycosylation in beta-cell dysfunction. Int J Mol Med 10(5):535-539, 2002
  23. Ceriello, A. Oxidative stress and glycemic regulation. Metabolism 49(2, suppl 1):27-29, 2000 https://doi.org/10.1016/S0026-0495(00)80082-7
  24. Baynes, J.W., Thorpe, S.R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 48: 1-9, 1999 https://doi.org/10.2337/diabetes.48.1.1
  25. Baynes, J.W. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405-412, 1991 https://doi.org/10.2337/diabetes.40.4.405
  26. Chang, K.C., Chung, S.Y., Chong, W.S., Suh, J.S., Kim, S.H., Noh, H.K., Seong, B.W., Ko, H.J., Chun, K.W. Possible superoxide radical-induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. J Pharmacol Exp Ther 266(2):992-1000, 1993
  27. Young, I.S., Tate, S., Lightbody, J.H., McMaster, D., Trimble, E.R. The effects of desferrioxamine and ascorbate on oxidative stress in the streptozotocin diabetic rat. Free Radic Biol Med 18(5):833-840, 1995 https://doi.org/10.1016/0891-5849(94)00202-U
  28. Halliwell, B., Gutteridge, J.M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186: 1-85, 1990 https://doi.org/10.1016/0076-6879(90)86093-B
  29. Saxena, A.K., Srivastava, P., Kale, R.K., Baquer, N.Z. Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem Pharmacol 45(3):539-542, 1993 https://doi.org/10.1016/0006-2952(93)90124-F
  30. McLennan, S.V., Heffernan, S., Wright, L., Rae, C., Fisher, E., Yue, D.K., Turtle, J.R. Changes in hepatic glutathione metabolism in diabetes. Diabetes 40(3):344-348, 1991 https://doi.org/10.2337/diabetes.40.3.344
  31. Di Filippo, C., Marfella, R., Cuzzocrea, S., Piegari, E., Petronella, P., Giugliano, D., Rossi, F., D'Amico, M. Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocrardial HO-1during ischemia/reperfusion. Diabetes 24: 803-810, 2005
  32. Rodella, L., Lamon, B.D., Rezzani, R., Sangras, B., Goodman, A.I., Falck, J.R., Abraham, N.G. Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes. Free Radic Biol Med 40: 2198-2205, 2006 https://doi.org/10.1016/j.freeradbiomed.2006.02.018
  33. Hu, C.M., Lin, H.H., Chiang, M.T., Chang, P.F., Chau, L.Y. Systemic expression of heme oxygenase-1 ameliorates type 1 diabetes in NOD mice. Diabetes 56(5):1240-1247, 2007 https://doi.org/10.2337/db06-0495