Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0147

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells  

Jeong, Da Eun (Department of Molecular Science and Technology, Ajou University)
Heo, Sungeun (Department of Molecular Science and Technology, Ajou University)
Han, Ji Hye (Department of Molecular Science and Technology, Ajou University)
Lee, Eun-young (Department of Molecular Science and Technology, Ajou University)
Kulkarni, Rohit N. (Department of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, and Harvard Stem Cell Institute)
Kim, Wook (Department of Molecular Science and Technology, Ajou University)
Abstract
In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.
Keywords
glucose; insulin; insulin receptor signaling; pancreatic ${\beta}$ cell; PTBP1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Giddings, S.J., Chirgwin, J. and Permutt, M.A. (1982). Effects of glucose on proinsulin messenger RNA in rats in vivo. Diabetes 31, 624-629.   DOI
2 Goodge, K.A., and Hutton, J.C. (2000). Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic b-cell. Semin. Cell Dev. Biol. 11, 235-242.   DOI
3 Hubbard, S.R. (1997). Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572-5581.   DOI
4 Itoh, N. and Okamoto, H. (1980). Translational control of proinsulin synthesis by glucose. Nature 283, 100-102.   DOI
5 Kim, W., Doyle, M.E., Liu, Z., Lao, Q., Shin, Y.K., Carlson, O.D., Kim, H.S., Thomas, S., Napora, J.K., Lee, E.K., et al. (2011). Cannabinoids inhibit insulin receptor signaling in pancreatic ${\beta}$ cells. Diabetes 60, 1198-1209.   DOI
6 Tang, C.Y., Man, X.F., Guo, Y., Tang, H.N., Tang, J., Zhou, C.L., Tan, S.W., Wang, M., Zhou, H.D. (2017). IRS-2 partially compensates for the insulin signal defects in IRS-1-/- mice mediated by miR-33. Mol. Cells. 40, 123-132.   DOI
7 Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85-96.
8 Tillmar, L., and Welsh, N. (2002). Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB). to the pyrimidine-rich insulin mRNA 3'-untranslated region. Mol. Med. 8, 263-272.   DOI
9 Tillmar, L., Carlsson, C., and Welsh, N. (2002). Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3'-untranslated region pyrimidine-rich sequence. J. Biol. Chem. 277, 1099-1106.   DOI
10 Webb, G.C., Akbar, M.S., Zhao, C., and Steiner, D.F. (2000). Expression profiling of pancreatic b cells: Glucose regulation of secretory and metabolic pathway genes. Proc. Natl. Acad. Sci. USA 97, 5773-5778.   DOI
11 Welsh, M., Nielsen, D.A., MacKrell, A.J., and Steiner, D.F. (1985). Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J. Biol. Chem. 260, 13590-13594.
12 Wicksteed, B., Herbert, T.P., Alarcon, C., Lingohr, M.K., Moss, L.G., and Rhodes, C.J. (2001). Cooperativity between the preproinsulin mRNA untranslated regions is necessary for glucose-stimulated translation. J. Biol. Chem. 276, 22553-22558.   DOI
13 Withers, D.J., Gutierrez, J.S, Towery, H., Burks, D.J., Ren, J.M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G.I., et al. (1998). Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900-904.   DOI
14 German, M.S., and Wang, J. (1994). The insulin gene contains multiple transcriptional elements that respond to glucose. Mol. Cell Biol. 14, 4067-4075.   DOI
15 Kim, W., Lao, Q., Shin, Y.K., Carlson, O.D., Lee, E.K., Gorospe, M., Kulkarni, R.N., and Egan, J.M. (2012). Cannabinoids induce pancreatic ${\beta}$-cell death by directly inhibiting insulin receptor activation. Sci. Signal. 5, ra23.
16 Knoch, K.P., Bergert, H., Borgonovo, B., Saeger, H.D., Altkruger, A., Verkade, P., and Solimena, M. (2004). Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat. Cell Biol. 6, 207-214.   DOI
17 Knoch, K.P., Meisterfeld, R., Kersting, S., Bergert, H., Altkruger, A., Wegbrod, C., Jager, M., Saeger, H.D., and Solimena, M. (2006). cAMP-dependent phosphorylation of PTB1 promotes the expression of insulin secretory granule proteins in b cells. Cell Metab. 3, 123-134.   DOI
18 Lee, E.K., Kim, W., Tominaga, K., Martindale, J.L., Yang, X., Subaran, S.S., Carlson, O.D., Mercken, E.M., Kulkarni, R.N., Akamatsu, W., et al. (2012). RNA-binding protein HuD controls insulin translation. Mol. Cell 45, 826-835.   DOI
19 Xu, M., and Hecht, N.B. (2007). Polypyrimidine tract binding protein 2 stabilizes phosphoglycerate kinase 2 mRNA in murine male germ cells by binding to its 3' UTR. Biol. Reprod. 76, 1025-1033.   DOI
20 Kulkarni, R.N., Bruning, J.C., Winnay, J.N., Postic, C., Magnuson, M.A., and Kahn, C.R. (1999). Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329-339.   DOI
21 Otani, K., Kulkarni, R.N., Baldwin, A.C., Krutzfeldt, J., Ueki, K., Stoffel, M., Kahn, C.R., and Polonsky, K.S. (2004). Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice. Am. J. Physiol. Endocrinol. Metab. 286, :E41-E49.   DOI
22 Pautz, A., Linker, K., Hubrich, T., Korhonen, R., Altenhofer, S., and Kleinert, H. (2006). The polypyrimidine tract-binding protein (PTB). is involved in the post-transcriptional regulation of human inducible nitric oxide synthase expression. J. Biol. Chem. 281, 32294-32302.   DOI
23 Paris, M., Bernard-Kargar, C., Berthault, M.F., Bouwens, L., and Ktorza, A. (2003). Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144, 2717-2727.   DOI
24 Permutt, M.A. and Kipnis, D.M. (1972). Insulin biosynthesis. I. On the mechanism of glucose stimulation. J. Biol. Chem. 247, 1194-1199.
25 Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.   DOI
26 Sawicka, K., Bushell, M., Spriggs, K.A., and Willis, A.E. (2008). Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. Trans. 36, 641-647.   DOI
27 Folli, F., Okada, T., Perego, C., Gunton, J., Liew, C.W., Akiyama, M., D'Amico, A., La Rosa, S., Placidi, C., Lupi, R., et al. (2011). Altered insulin receptor signalling and ${\beta}$-cell cycle dynamics in type 2 diabetes mellitus. PLoS One 6, e28050.   DOI
28 Assmann, A., Ueki, K., Winnay, J.N., Kadowaki, T., and Kulkarni, R.N. (2009). Glucose effects on beta-cell growth and survival require activation of insulin receptors and insulin receptor substrate 2. Mol. Cell Biol. 29, 3219-3228.   DOI
29 Brunstedt, J., and Chan, S.J. (1982). Direct effect of glucose on the preproinsulin mRNA level in isolated pancreatic islets. Biochem. Biophys. Res. Commun. 106, 1383-1389.   DOI
30 Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stemcell differentiation. Nature 429, 41-46.   DOI
31 Georgia, S., and Bhushan, A. (2004). Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J. Clin. Invest. 114, 963-968.   DOI