Browse > Article
http://dx.doi.org/10.5142/JGR.2008.32.3.187

Anti-diabetic Effect and Mechanism of Korean Red Ginseng in C57BL/KsJ db/db Mice  

Yuan, Hai-Dan (Pharmacology and Clinical Pharmacy Lab, College of Pharmacy, Kyung Hee University)
Shin, Eun-Jung (Pharmacology and Clinical Pharmacy Lab, College of Pharmacy, Kyung Hee University)
Chung, Sung-Hyun (Pharmacology and Clinical Pharmacy Lab, College of Pharmacy, Kyung Hee University)
Publication Information
Journal of Ginseng Research / v.32, no.3, 2008 , pp. 187-193 More about this Journal
Abstract
The present study was designed to investigate the anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. The db/db mice were divided into three groups: diabetic control group (DC), Korean red ginseng group (KRG, 100 mg/kg) and metformin group (MET, 300 mg/kg), and treated with drugs once per day for 10 weeks. Compared to the DC group, fasting blood glucose levels were decreased by 19.8% in KRG-, 67.7% in MET-treated group. With decreased plasma glucose and insulin levels, the insulin resistance index of the KRG-treated group was reduced by 27.6% compared to the DC group. The HbA1c levels in KRG and MET-treated groups were also decreased by 11.0% and 18.9% compared to that of DC group, respectively. Plasma triglyceride and non-esterified fatty acid levels were decreased by 18.8% and 16.8%, respectively, and plasma adiponectin and leptin levels were increased by 20.6% and 12.1%, respectively, in the KRG-treated group compared to those in DC group. Histological analyses of the liver and fat tissue of mice treated with KRG revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the DC group. From the pancreatic islet double-immunofluorescence staining, we observed KRG has increased insulin contents, but decreased glucagon production. To elucidate action mechanism of KRG, effects on AMP-activated protein kinase (AMPK) and its downstream target proteins responsible for fatty acid oxidation and gluconeogenesis were explored in the liver. KRG activated AMPK and acetyl-coA carboxylase (ACC) phosphorylations, resulting in stimulation of fatty acid oxidation. KRG also caused to down regulation of SREBP1a and its target gene expressions such as FAS, SCD1 and GPAT. In summary, our results suggest that KRG exerted the anti-diabetic effect through AMPK activation in the liver of db/db mice.
Keywords
Korean red ginseng; C57BL/KsJ db/db mice; diabetes; AMPK; fatty acid oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tuttle, K. R., McGill, J. B., Haney, D. J., Lin, T. E., Anderson, P. W., PKC-DRS., PKC-DMES and PKC-DRS 2 Study Groups : Kidney outcomes in long-term studies of ruboxistaurin for diabetic eye disease. Clin. J. Am. Soc. Nephrol. 2, 631-636 (2007)   DOI   ScienceOn
2 Christopher, D., Saudek, M. D., Rachel, L., Derr, M. D., Rita, R. and Kalyani, M. D. : Assessing Glycemia in Diabetes Using Self-monitoring Blood Glucose and Hemoglobin $A_{1c}$. JAMA 295, 1688-1697 (2006)   DOI   ScienceOn
3 Wang, Y., Lam, K. S, Yau, M. H. and Xu, A. : Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem. J. 409, 623-633 (2008)   DOI   ScienceOn
4 Aguilera, C. M., Gil-Campos, M., Canete, R. and Gil, A. : Alterations in plasma and tissue lipids associated with obesity and metabolic syndrome. Clin. Sci (Lond). 114, 183-193 (2008)   DOI   ScienceOn
5 Yamauchi, T., Kamon, J., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B. and Kadowaki, T. : Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295 (2002)   DOI   ScienceOn
6 Fisher, RM., Thorne, A., Hamsten, A. and Arner, P. : Fatty acid binding protein expression in different human adipose tissue depots in relation to rates of lipolysis and insulin concentration in obese individuals. Mol. Cell. Biochem. 239, 1-2 (2002)   DOI   ScienceOn
7 Stich, V. and Berlan, M. : Physiological regulation of NEFA availability: lipolysis pathway. Proc. Nutr. Soc. 63, 369-374 (2004)
8 Vuksan, V., Sung, M. K., Sievenpiper, J. L., Stavro, P. M., Jenkins, A. L., Di Buono M., Lee, K. S., Leiter, L. A., Nam, K. Y., Arnason, J. T., Choi, M. and Naeem, A. : Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr. Metab. Cardiovasc. Dis. 18, 46-56 (2008)   DOI   ScienceOn
9 Stades, A. M., Heikens, J. T., Erkelens, D. W., Holleman, F. and Hoekstra, J. B. : Metformin and lactic acidosis: cause or coincidence? A review of case reports. J. Intern. Med. 255, 179-187 (2004)   DOI   ScienceOn
10 Chiang, C. K., Ho, T. I., Peng, Y. S., Hsu, S. P., Pai, M. F., Yang, S. Y., Hung, K. Y. and Wu, K. D. : Rosiglitazone in diabetes control in hemodialysis patients with and without viral hepatitis infection: effectiveness and side effects. Diabetes Care 30, 3-7 (2007)   DOI   ScienceOn
11 Kobayashi, M., Iwata, M. and Haruta, T. : Clinical evaluation of pioglitazone. Nippon. Rinsho. 58, 395-400 (2000)
12 Alarcon-Aguilara, F. J., Roman-Ramos, R., Perez-Gutierrez, S., Aguilar-Contreras, A., Contreras-Weber, C. C. and Flores-Saenz, J. L.: Study of the anti-hyperglycemic effect of plants used as antidiabetics. J. Ethnopharmacol. 61, 101-110 (1998)   DOI   ScienceOn
13 Ryu, J. K., Lee, T., Kim, D. J., Park, I. S., Yoon, S. M., Lee, H. S., Song, S. U. and Suh, J. K. : Free radical-scavenging activity of Korean red ginseng for erectile dysfunction in non-insulin-dependent diabetes mellitus rats. Urology 65, 611-615 (2003)   DOI   ScienceOn
14 Wargovich, M. J. : Colon cancer chemoprevention with ginseng and other botanicals. J. Korean Med. Sci. 16, S81-86 (2001)   DOI
15 Velasco, G., Geelen, M. J. and Guzman, M. : Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch. Biochem. Biophys. 337, 169-175 (1997)   DOI   ScienceOn
16 Kim, H. J., Kim, H. J., Lee, K. E., Kim, D. J., Kim, S. K., Ahn, C. W., Lim, S. K., Kim, K. R., Lee, H. C., Huh, K. Ba and Cha, B. S. : Metabolic significance of nonalcoholic fatty liver disease in nonobese, nondiabetic adults. Arch. Intern. Med. 164, 2169-2175 (2004)   DOI   ScienceOn
17 Lin, H. Z., Yang, S. Q., Chuckaree, C., Kuhajda, F., Ronnet, G. and Diehl, A. M. : Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat. Med. 6, 998-1003 (2000)   DOI   ScienceOn
18 Jiang, G. and Zhang, B. B. : Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 284, E671-678 (2003)   DOI
19 Horton, J. D., Goldstein, J. L. and Brown, M. S. : SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest., 109, 1125-1131 (2002)   DOI
20 Raz, I., Eldor, R., Cernea, S. and Shafrir, E. : Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab. Res. Rev. 21, 3-14 (2005)   DOI   ScienceOn
21 Kim, Y. M., Namkoong, S., Yun, Y. G., Hong, H. D., Lee, Y. C., Ha, K. S., Lee, H., Kwon, H. J., Kwon, Y. G. and Kim, Y. M. : Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol. Pharm. Bull. 30, 1674-1679 (2007)   DOI   ScienceOn
22 Chujo, K., Shima, K., Tada, H., Oohashi, T., Minakuchi, J. and Kawashima, S. : Indicators for blood glucose control in diabetics with end-stage chronic renal disease: GHb vs. glycated albumin (GA). J. Med. Invest. 53, 223-228 (2006)   DOI
23 Kim, D. H., Jung, J. S., Moon, Y. S., Sung, J. H., Suh, H. W., Kim, Y. H. and Song, D. K. : Inhibition of intracerebroventricular injection stress-induced plasma corticosterone levels by intracerebroventricularly administered compound K, a ginseng saponin metabolite, in mice. Biol. Pharm. Bull. 26, 1035-1038 (2007)   DOI   ScienceOn
24 Sung, J., Han, K. H., Zo, J. H., Park, H. J., Kim, C. H. and Oh, B. H. : Effects of red ginseng upon vascular endothelial function in patients with essential hypertension. Am. J. Chin. Med. 28, 205-216 (2000)   DOI   ScienceOn
25 Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F. and Turner, R. C. : Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412-419 (1985)   DOI
26 Buren, J., Lindmark, S., Renstrom. F. and Eriksson. J. W. : In vitro reversal of hyperglycemia normalizes insulin action in fat cells from type 2 diabetes patients: is cellular insulin resistance caused by glucotoxicity in vivo? Metabolism 52, 239-245 (2003)   DOI   ScienceOn
27 Tilg, H. and Kaser, A. : Treatment strategies in nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol Hepato. 2, 148-155 (2005)   DOI   ScienceOn
28 Shin, H. J., Kim, Y. S., Kwak, Y. S., Song, Y. B., Kim, Y. S. and Park, J. D. : Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP). Planta. Med. 70, 1033-1038 (2004)   DOI   ScienceOn
29 Yin, H. Q., Kim, M., Kim, J. H., Kong, G., Kang, K. S., Kim, H. L., Yoon, B. I., Lee, M. O. and Lee, B. H. : Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice. Toxicol. Appl. Pharmacol. 223, 225-233 (2007)   DOI   ScienceOn
30 Nammi, S., Boini, M. K., Lodagala, S. D. and Behara, R. B. : The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC. Complement Altern. Med. 3, 4 (2003)   DOI   ScienceOn
31 Hardie, D. G. : The AMP-activated protein kinase pathway--new players upstream and downstream. J. Cell. Sci. 117, 5479-5487 (2004)   DOI   ScienceOn