• Title/Summary/Keyword: Ishikawa iterative process with errors

Search Result 6, Processing Time 0.022 seconds

THE CONVERGENCE THEOREMS FOR COMMON FIXED POINTS OF UNIFORMLY L-LIPSCHITZIAN ASYMPTOTICALLY Φ-PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.295-305
    • /
    • 2010
  • In this paper, we show that the modified Mann iteration with errors converges strongly to fixed point for uniformly L-Lipschitzian asymptotically $\Phi$-pseudocontractive mappings in real Banach spaces. Meanwhile, it is proved that the convergence of Mann and Ishikawa iterations is equivalent for uniformly L-Lipschitzian asymptotically $\Phi$-pseudocontractive mappings in real Banach spaces. Finally, we obtain the convergence theorems of Ishikawa iterative sequence and the modified Ishikawa iterative process with errors.

ITERATIVE SOLUTIONS TO NONLINEAR EQUATIONS OF THE ACCRETIVE TYPE IN BANACH SPACES

  • Liu, Zeqing;Zhang, Lili;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.265-273
    • /
    • 2001
  • In this paper, we prove that under certain conditions the Ishikawa iterative method with errors converges strongly to the unique solution of the nonlinear strongly accretive operator equation Tx=f. Related results deal with the solution of the equation x+Tx=f. Our results extend and improve the corresponding results of Liu, Childume, Childume-Osilike, Tan-Xu, Deng, Deng-Ding and others.

  • PDF

NEW ITERATIVE PROCESS FOR THE EQUATION INVOLVING STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Zeng, Ling-Yan;Li, Jun;Kim, Jong-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.861-870
    • /
    • 2007
  • In this paper, under suitable conditions, we show that the new class of iterative process with errors introduced by Li et al converges strongly to the unique solution of the equation involving strongly accretive operators in real Banach spaces. Furthermore, we prove that it is equivalent to the classical Ishikawa iterative sequence with errors.

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF

Strong Convergence Theorems by Modified Four Step Iterative Scheme with Errors for Three Nonexpansive Mappings

  • JHADE, PANKAJ KUMAR;SALUJA, AMARJEET SINGH
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.667-678
    • /
    • 2015
  • The aim of this paper is to prove strong convergence theorem by a modified three step iterative process with errors for three nonexpansive mappings in the frame work of uniformly smooth Banach spaces. The main feature of this scheme is that its special cases can handle both strong convergence like Halpern type and weak convergence like Ishikawa type iteration schemes. Our result extend and generalize the result of S. H. Khan, Kim and Xu and many other authors.