ITERATIVE SOLUTIONS TO NONLINEAR EQUATIONS OF THE ACCRETIVE TYPE IN BANACH SPACES

Zeqing Liu, Lili Zhang and Shin Min Kang

Abstract

In this paper, we prove that under certain conditions the Ishikawa rterative method with errors converges strongly to the unique solution of the nonlinear strongly accretive operator equation $T x=f$. Related results deal with the solution of the equation $x+T x=f$ Our results extend and improve the corresponding results of Liu, Childume, Childume-Osilike, Tan-Xu, Deng, Deng-Ding and others.

1. Introduction and Preliminaries

Let X be a real Banach space and denote its norm and dual by $\|\cdot\|$ and X^{*}, respectively. A nonlinear operator T with domain $D(T)$ and range $R(T)$ in X is said to be accretive (Browder [1] and Kato [11]) if for all $x, y \in D(T)$ and $r>0$, there holds the inequality

$$
\begin{equation*}
\|x-y\| \leq\|x-y+r(T x-T y)\| \tag{1.1}
\end{equation*}
$$

T is accretive if and only if for any $x, y \in D(T)$, there exists $j(x-y) \in$ $J(x-y)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \geq 0 \tag{1.2}
\end{equation*}
$$

Recelved February 20, 2001. Revised September 30, 2001
2000 Mathematics Subject Classification: $47 \mathrm{H} 05,47 \mathrm{H} 06,47 \mathrm{H} 14,47 \mathrm{H} 10$.
Key words and phrases accretive, m-accretıve, strongly accretıve, Ishikawa iterative process with errors.
where

$$
J x=\left\{f \in X^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}, \quad x \in X
$$

is the normalized duality mapping of X and $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing between X and X^{*}. If T is accretive and $(1+r T)(D(T))=X$ for all $r>0$, then T is called m-accretuve. If for all $x, y \in D(T)$, there exists $j(x-y) \in J(x-y)$ and a constant $k \in(0,1)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \geq k\|x-y\|^{2} \tag{1.3}
\end{equation*}
$$

then T is called strongly accretive. It is well known (see, for example, Theorem 13.1 of Deimling [7]) that for given $f \in X$, the equation

$$
\begin{equation*}
T x=f \tag{1.4}
\end{equation*}
$$

has a unique solution if $T: X \rightarrow X$ is strongly accretive and continuous. Martin [14] has also proved that if $T: X \rightarrow X$ is continuous and accretive, then T is m-accretive so that for given $f \in X$ the equation

$$
\begin{equation*}
x+T x=f \tag{1.5}
\end{equation*}
$$

has a unique solution.
Several authors have applied the Mann iterative method and the Ishikawa iterative method to approximate solutions of equations (1.4) and (1.5). (See, for example, [2]-[4], [8]-[11], [16]). The objective of this paper is to study the iterative approximation of solutions to the equation $T x=f$ in the case when T is Lipschitzian and strongly accretive and X is an arbitrary real Banach space. Our results generalize most of the results that have appeared recently. In particular, the results of [2]-[5], [8]-[11], [13], [15], [16] and a host of others will be special cases of our theorems.

The following lemma plays a crucial role in the proofs of our main results.

LEMMA 1 1. ([13]) Let $\left\{a_{n}\right\}_{n=0}^{\infty},\left\{b_{n}\right\}_{n=0}^{\infty},\left\{c_{n}\right\}_{n=0}^{\infty}$ be three nonnegative real sequences satisfying the inequality

$$
a_{n+1} \leq\left(1-w_{n}\right) a_{n}+b_{n} w_{n}+c_{n}
$$

for all $n \geq 0$, where $\left\{w_{n}\right\}_{n=0}^{\infty} \subset[0,1], \sum_{n=0}^{\infty} w_{n}=\infty, \lim _{n \rightarrow \infty} b_{n}=0$ and $\sum_{n=0}^{\infty} c_{n}<\infty$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

2. Main Results

In the sequel, $k \in(0,1)$ is the constant appearing in (1.3), l denotes the Lipschitz constant of $T, L=1+l$ and I stands for the identity operator on X.

THEOREM 2.1 Let X be an arbitrary real Banach space, $T: X \rightarrow$ X be a Lipschitz strongly accretive operator and $f \in X$. Define the sequence iteratively by $x_{0}, u_{0}, v_{0} \in X$,

$$
\left\{\begin{array}{l}
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} S x_{n}+v_{n}, \quad n \geq 0 \tag{2.1}\\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S y_{n}+u_{n}, \quad n \geq 0
\end{array}\right.
$$

where $S x=f+(I-T) x$ for all $x \in X,\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ are two real sequences and $\left\{u_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$ are two sequences in X satisfying the following conditions:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \alpha_{n}=+\infty, \quad 0 \leq \alpha_{n}, \beta_{n} \leq 1, \quad n \geq 0 \tag{2.2}\\
& \frac{k-L(L+1) \beta_{n}-L(L+1)\left(1+\beta_{n} l\right) \alpha_{n}}{1-(1-k) \alpha_{n}} \geq t, \quad n \geq 0 \tag{2.3}\\
& \lim _{n \rightarrow \infty}\left\|v_{n}\right\|=0, \quad \sum_{n=0}^{\infty}\left\|u_{n}\right\|<+\infty \tag{2.4}
\end{align*}
$$

where $t \in(0,1)$ is a constant. Then $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to the solution of $T x=f$.

Proof. It follows from [1], [6] and the strong accretivity of T that the equation $T x=f$ has a unique solution p in X. Then p is a fixed point of S and S is Lipschitz with constant L. It follows from (1.3) that for all $x, y \in X$, there exists $j(x-y) \in J(x-y)$ such that

$$
\langle(I-S) x-(I-S) y, j(x-y)\rangle \geq k\|x-y\|^{2}
$$

Thus

$$
\langle(I-S-k I) x-(I-S-k I) y, j(x-y)\rangle \geq 0
$$

In view of (1.1) and (1.2), we have

$$
\begin{equation*}
\|x-y\| \leq\|x-y+r[(I-S-k I) x-(I-S-k I) y]\| \tag{2.5}
\end{equation*}
$$

for all $x, y \in X$ and $r>0$. Using (2.1), we obtain that

$$
\begin{align*}
\left(1-\alpha_{n}\right) x_{n}= & x_{n+1}-\alpha_{n} S y_{n}-u_{n} \\
= & {\left[1-(1-k) \alpha_{n}\right] x_{n+1}+\alpha_{n}(I-S-k I) x_{n+1} } \tag{2.6}\\
& +\alpha_{n} S x_{n+1}-\alpha_{n} S y_{n}-u_{n}
\end{align*}
$$

Note that

$$
\begin{equation*}
\left(1-\alpha_{n}\right) p=\left[1-(1-k) \alpha_{n}\right] p+\alpha_{n}(I-S-k I) p \tag{2.7}
\end{equation*}
$$

It follows from (2.5) $\sim(2.7)$ that

$$
\begin{aligned}
& \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| \\
& \geq\left[1-(1-k) \alpha_{n}\right] \| x_{n+1}-p+\frac{\alpha_{n}}{1-(1-k) \alpha_{n}}\left[(I-S-k I) x_{n+1}\right. \\
& \quad-(I-S-k I) p]\left\|-\alpha_{n}\right\| S x_{n+1}-S y_{n}\|-\| u_{n} \| \\
& \geq\left[1-(1-k) \alpha_{n}\right]\left\|x_{n+1}-p\right\|-\alpha_{n}\left\|S x_{n+1}-S y_{n}\right\|-\left\|u_{n}\right\|
\end{aligned}
$$

which implies that

$$
\begin{align*}
& \left\|x_{n+1}-p\right\| \\
& \leq \frac{1-\alpha_{n}}{1-(1-k) \alpha_{n}}\left\|x_{n}-p\right\|+\frac{\alpha_{n}}{1-(1-k) \alpha_{n}}\left\|S x_{n+1}-S y_{n}\right\| \tag{2.8}\\
& \quad+\frac{1}{1-(1-k) \alpha_{n}}\left\|u_{n}\right\| .
\end{align*}
$$

We have the following estimates:

$$
\begin{align*}
\left\|x_{n}-y_{n}\right\| & \leq \beta_{n}\left\|x_{n}-S x_{n}\right\|+\left\|v_{n}\right\| \\
& \leq(L+1) \beta_{n}\left\|x_{n}-p\right\|+\left\|v_{n}\right\| \tag{2.9}
\end{align*}
$$

$$
\begin{align*}
\left\|S y_{n}-y_{n}\right\| & \leq(L+1)\left\|y_{n}-p\right\| \\
& \leq(L+1)\left(1-\beta_{n}+L \beta_{n}\right)\left\|x_{n}-p\right\|+(L+1)\left\|v_{n}\right\| \tag{2.10}\\
& \leq L(L+1)\left\|x_{n}-p\right\|+(L+1)\left\|v_{n}\right\|
\end{align*}
$$

By (2.1), (2.9) and (2.10), we yield that

$$
\begin{align*}
& \left\|S y_{n}-S y_{n}\right\| \\
& \leq L\left\|x_{n+1}-y_{n}\right\| \\
& \leq L\left(1-\alpha_{n}\right)\left\|x_{n}-y_{n}\right\|+\alpha_{n} L\left\|S y_{n}-y_{n}\right\|+L\left\|u_{n}\right\| \tag{2.11}\\
& \leq\left[L(L+1) \beta_{n}+L(L+1)\left(1+\beta_{n} l\right) \alpha_{n}\right]\left\|x_{n}-p\right\| \\
& \quad+L(L+1)\left\|v_{n}\right\|+L\left\|u_{n}\right\|
\end{align*}
$$

Using (2.11) in (2.8), we conclude that

$$
\begin{align*}
\| & x_{n+1}-p \| \\
\leq & \left\{\frac{1-\alpha_{n}}{1-(1-k) \alpha_{n}}+\frac{\alpha_{n}}{1-(1-k) \alpha_{n}}\left[L(L+1) \beta_{n}\right.\right. \\
& \left.\left.+L(L+1)\left(1+\beta_{n} l\right) \alpha_{n}\right]\right\}\left\|x_{n}-p\right\| \tag{2.12}\\
& +\frac{\alpha_{n}}{1-(1-k) \alpha_{n}} L(L+1)\left\|v_{n}\right\|+\frac{L}{1-(1-k) \alpha_{n}}\left\|u_{n}\right\| \\
\leq & {\left[1-\alpha_{n} \frac{k-L(L+1) \beta_{n}-L(L+1)\left(1+\beta_{n} l\right) \alpha_{n}}{1-(1-k) \alpha_{n}}\right]\left\|x_{n}-p\right\| } \\
& +D \alpha_{n}\left\|v_{n}\right\|+D\left\|u_{n}\right\|
\end{align*}
$$

where $D=\frac{L^{2}+L}{k}$. It follows from (2.3) and (2.12) that

$$
\left\|x_{n+1}-p\right\| \leq\left(1-t \alpha_{n}\right)\left\|x_{n}-p\right\|+D \alpha_{n}\left\|v_{n}\right\|+D\left\|u_{n}\right\| .
$$

Put

$$
a_{n}=\left\|x_{n}-p\right\|, \quad w_{n}=t \alpha_{n}, \quad b_{n}=\frac{D}{t}\left\|v_{n}\right\| \quad \text { and } \quad c_{n}=D\left\|u_{n}\right\|
$$

for any $n \geq 0$. Then Lemma 1.1 ensures that $\left\|x_{n}-p\right\| \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

Theorem 22 Let $X, f, T,\left\{x_{n}\right\}_{n=0}^{\infty},\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$, be as in Theorem 2.1. Suppose that there exists a nonnegative sequence $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ with $\lim _{n \rightarrow \infty} \gamma_{n}=0$ and $\left\|u_{n}\right\|=\gamma_{n} \alpha_{n}$ for any $n \geq 0$. Then $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to the solution of $T x=f$.

Proof Just as in the proof of Theorem 2.1, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & \leq\left(1-t \alpha_{n}\right)\left\|x_{n}-p\right\|+D \alpha_{n}\left\|v_{n}\right\|+D\left\|u_{n}\right\| \\
& =\left(1-t \alpha_{n}\right)\left\|x_{n}-p\right\|+D \alpha_{n}\left(\left\|v_{n}\right\|+\gamma_{n}\right) .
\end{aligned}
$$

Put

$$
a_{n}=\left\|x_{n}-p\right\|, \quad w_{n}=t \alpha_{n}, \quad b_{n}=\frac{D}{t}\left(\left\|v_{n}\right\|+\gamma_{n}\right) \quad \text { and } \quad c_{n}=0
$$

for any $n \geq 0$. Then Lemma 1.1 ensures that $\left\|x_{n}-p\right\| \rightarrow 0$ as $n \rightarrow \infty$ completing the proof.

Remark 2 1. Theorem 2.1 and Theorem 2.2 extend Theorem 1 of Liu [13], Theorem 1 of Childume [2], Theorem 2 of Childume [3], Theorems 1 and 3 of Childume and Osilike [4], Theorems 3.1 and 4.1 of Tan and Xu [16], Theorem 1 of Deng [8], [10], Theorems 1 and 3 of Deng [9] and Theorem 2 of Deng and Ding [11] from Banach spaces which are either uniformly convex or uniformly smooth to arbitrary real Banach spaces.

Remark 22 The following example reveals that Theorem 2.1 extends properly Theorem 1 of Osilike [15].

Example 2 1. Let X, f, T be as in Theorem 2.1 and

$$
\begin{aligned}
& t=\frac{k}{2}, \quad \alpha_{n}=\frac{k}{4 L(L+1)+L}, \quad \beta_{n}=\frac{k}{4 L(L+1)}, \\
& \left\|u_{n}\right\|=\frac{1}{(n+1)^{2}}, \quad\left\|v_{n}\right\|=\frac{1}{n+1}
\end{aligned}
$$

for all $n \geq 0$. Then the conditions of Theorem 2.1 are satisfied. But Theorem 1 in [15] is not applicable since $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ do not converge to 0 .

Theorem 23 Let X be an arbitrary real Banach space and T : $X \rightarrow X$ be a Lipschitz accretive operator. Let $\left\{u_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$ be as in Theorem 2.1, $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ satisfy (2.3) and

$$
\begin{equation*}
1-l(l+1) \beta_{n}-l(l+1)\left(1+\beta_{n} l\right) \alpha_{n} \geq t, \quad n \geq 0 \tag{2.13}
\end{equation*}
$$

where $t \in(0,1)$ is a constant. Then for any given $f \in X$, the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ generated from arbitrary $x_{0}, u_{0}, v_{0} \in X$ by

$$
\left\{\begin{array}{l}
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n}\left(f-T x_{n}\right)+v_{n}, \quad n \geq 0 \\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left(f-T y_{n}\right)+u_{n}, \quad n \geq 0
\end{array}\right.
$$

converges strongly to the solution of $x+T x=f$.
Proof. It follows from Martin [14] and the accretivity of T that the equation $x+T x=f$ has a unique solution $p \in X$. Define $S: X \rightarrow X$ by $S x=f-T x$. Then p is a fixed point of S and S is Lipschitz with the same Lipschitz constant as T. Furthermore, for all $x, y \in X$, there exists $j(x-y) \in J(x-y)$ such that

$$
\langle(I-S) x-(I-S) y, j(x-y)\rangle \geq\|x-y\|^{2}
$$

The rest of the argument is essentially the same as in the proof of Theorem 2.1 and is therefore omitted.

Theorem 24 Let X be an arbitrary real Banach space and T : $X \rightarrow X$ be a Lipschitz accretive operator. Let $\left\{u_{n}\right\}_{n=0}^{\infty},\left\{v_{n}\right\}_{n=0}^{\infty}$ be as in Theorem 2.2 and $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be as in Theorem 2.3. Then for any given $f \in X$, the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ generated as in Theorem 2.3 converges strongly to the solution of the equation $x+T x=f$.

Remark 23 Theorem 2.3 and Theorem 2.4 extend Corollary 9 of Chidume and Osilike [5] from Ishikawa iteration to Ishikawa iteration with errors, and improve Corollary 5 of Osilike [15]. The following example shows that Theorem 2.3 generalizes properly Corollary 5 in [15].

Example 22 Let X, f, T be as in Theorem 2.1 and

$$
\begin{aligned}
& t=\frac{1}{2}, \quad \alpha_{n}=\frac{1}{4 l(l+1)+l}, \quad \beta_{n}=\frac{1}{4 l(l+1)}, \\
& \left\|u_{n}\right\|=\frac{1}{(n+1)^{2}}, \quad\left\|v_{n}\right\|=\frac{1}{n+1}
\end{aligned}
$$

for all $n \geq 0$. Then the conditions of Theorem 2.3 are satisfied. But Corollary 5 in [15] does not hold since $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\beta_{n}\right\}_{n=0}^{\infty}$ do not converge to 0 .

References

[1] F E Browder, Nonlanear mapprngs of nonexpansuve and accretive type in Ba nach spaces, Bull Amer. Math Soc 73 (1967), 875-882
[2] C E. Chidume, An iterative process for nonlinear Lipschitz strongly accretzve mappings on L_{p} spaces, J Math Anal Appl 151 (1990), 453-461
[3: C E. Chidume, Iterative solutzon of nonlinear equations wnth strongly accretzve operators, J Math Anal Appl 192 (1995), 727-741
[4] C E Chidume and M. O. Osilike, Ishikawa vteration for nonlinear Lipschitz strongly accretive mappings, J. Math Anal Appl. 192 (1995), 727-741
[5] C E Chidume and M O Osilike, Nonlunear accretve and pseudo-contractive operator equations in Banach spaces, Nonlmear Anal. TMA 31 (1998), 779789
(6] K Demling, Zeros of accretve operators, Manuscripta Math 13 (1974), 365374
[7] K Demming, Nonlinear Functional Analysus, New York/Berlin, Springer-Verlag, 1985
[8] L Deng, On Childume's open question, J Math Anal Appl 174 (1991), 441. 449
[9] L Deng, An ateratave process for nonlinear Lipschatz and strongly accretzve mappings in unvformly convex and unaformly smooth Banach spaces, Acta Appl. Math 32 (1993), 183-196.
[10] L Deng, Iteration processes for nonlinear Lipschitzaan strongly accretzve mappangs in L_{p} spaces, J Math Anal Appl 188 (1994), 128-140
[11] L Deng and X P Ding, Iterative approxzmation of Lapschatz strictly pseudocontractive mappings in uniformly smooth Banach spaces, Nonlinear Anal TMA 24 (1995), 981-987
[12] T Kato, Nonlonear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520.
[13] L. S Liu, Ishikawa and Mann iteratve process unth errors for nonlunear strongly accretve mappings in Banach spaces, J Math. Anal Appl 194 (1995), 114-125
[14] R H Martni, Jr, A global exnstence theorem for autonomous dufferentzal equations in Banach spaces, Proc Amer Math. Soc 26 (1970), 307-314
[15] M O Osilike, Ishikawa and Mann ateration methods with errors for nonlunear equatzons of the accretzve type, J Math Anal Appl 213 (1997), 91-105
[16] K K Tan and H K Xu, Iterative solutions to nonlinear equatzons of strongly accretve operators in Banach spaces, J Math Anal Appl 178 (1993), 9-21

Zeqing Llu and Lili Zhang
Department of Mathematics
Liaoning Normal Unıversity
P. O. Box 200, Dalian

Liaoning 116029, People's Republic of China
E-mall: zeqingliu@sma.com.cn
Shin Min Kang
Department of Mathematics
Gyeongsang National University
Chinju $660-701$, Korea
E-mail smkang@nongae.gsnu ac.kr

