• Title/Summary/Keyword: Ischemia/reperfusion

Search Result 444, Processing Time 0.031 seconds

Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets (급성 저산소성 허혈성 뇌손상이 유발된 신생자돈에서 재산소-재관류기 동안 NG-monomethyl-L-arginine과 L-arginine이 뇌의 혈역학 및 에너지 대사에 미치는 영향)

  • Ko, Sun Young;Kang, Saem;Chang, Yun Sil;Park, Eun Ae;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.317-325
    • /
    • 2006
  • Purpose : This study was carried out to elucidate the effects of nitric oxide synthase(NOS) inhibitor, NG-monomethyl-L-arginine(L-NMMA) and nitric oxide precursor, L-arginine(L-Arg) on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion(RR) after hypoxia-ischemia(HI) in newborn piglets. Methods : Twenty-eight newborn piglets were divided into 4 groups; Sham normal control(NC), experimental control(EC), L-NMMA(HI & RR with L-NMMA), and L-Arg(HI & RR with L-Arg) groups. HI was induced by occlusion of bilateral common carotid arteries and simultaneously breathing with 8 percent oxygen for 30 mins, and followed RR by release of carotid occlusion and normoxic ventilation for one hour. All groups were monitored with cerebral hemodynamics and cytochrome $aa_3$ (Cyt $aa_3$) using near infrared spectroscopy(NIRS). $Na^+$, $K^+$-ATPase activity, lipid peroxidation products, and tissue high energy phosphate levels were determined biochemically in the cerebral cortex. Results : In experimental groups, mean arterial blood pressure, $PaO_2$, and pH decreased, and base excess and blood lactate level increased after HI compared to NC group(P<0.05). These variables subsequently returned to baseline after RR except pH. There were no differences among the experimental groups. In NIRS, oxidized hemoglobin($HbO_2$) decreased and hemoglobin(Hb) increased during HI(P<0.05) but returned to base line immediately after RR; 40 min after RR, the $HbO_2$ had decreased significantly compared to NC group(P<0.05). Changes of Cyt $aa_3$ decreased significantly compared to NC after HI and recovered at the end of the experiment. Significantly reduced cerebral cortical cell membrane $Na^+$, $K^+$-ATPase activity and increased lipid peroxidation products(P<0.05) were not improved with L-NMMA or L-Arg. Conclusion : These findings suggest that NO is not involved in the mechanism of HI and RR brain damage during the early acute phase of RR.

Assessment of the Cardioprotection Offered by Fisetin in H2O2-induced Zebrafish (Danio rerio)-Tg (cmlc2: egfp)

  • Lee, Jeong-Soo;Park, Eun-Seok;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.24 no.2
    • /
    • pp.130-133
    • /
    • 2018
  • The aim of this study was to evaluate the protective function of fisetin, a natural flavonoid in zebrafish heart for the treatment of myocardial infarction in coronary and ischemic heart disease. For this purpose, we induced oxidative stress zebrafish (Danio rerio)-Tg (cmlc2: egfp) by $H_2O_2$ and then administered fisetin, the protective effect of fisetin was determined by measuring the heart rate following fisetin administration. After testing the toxicity of fisetin, we found that the heartt increased in a concentration-dependent manner, however there was no difference between the heart rates of embryos and adults. The improved heart rate demonstrated the cardioprotective effect of fisetin. The result showed that fisetin, at concentration of 3and $5{\mu}M$, significantly increased heart rate compared with the heart with $H_2O_2$ alone. This indicates that fisetin plays an important role in the prevention of heart damage and treatment of cardiovascular diseases caused by oxidative stress due to ischemia / reperfusion.

Protein-protein interaction between caveolin-1 and SHP-2 is dependent on the N-SH2 domain of SHP-2

  • Park, Hyunju;Ahn, Keun Jae;Kang, Jihee Lee;Choi, Youn-Hee
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.184-189
    • /
    • 2015
  • Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) is known to protect neurons from neurodegeneration during ischemia/reperfusion injury. We recently reported that ROS-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 in astrocytes and complex formation between caveolin-1 and SHP-2 in response to oxidative stress. To examine the region of SHP-2 participating in complex formation with caveolin-1, we generated three deletion mutant constructs and six point mutation constructs of SHP-2. Compared with wild-type SHP-2, binding of the N-SH2 domain deletion mutant of SHP-2 to p-caveolin-1 was reduced greatly, using flow cytometric competitive binding assays and surface plasmon resonance (SPR). Moreover, deletion of the N-SH2 domain of SHP-2 affected $H_2O_2$-mediated ERK phosphorylation and Src phosphorylation at Tyr 419 in primary astrocytes, suggesting that N-SH2 domain of SHP-2 is responsible for the binding of caveolin-1 and contributes to the regulation of Src phosphorylation and activation following ROS-induced oxidative stress in brain astrocytes.

Antioxidant enzymes as redox-based biomarkers: a brief review

  • Yang, Hee-Young;Lee, Tae-Hoon
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.200-208
    • /
    • 2015
  • The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208]

Cerebral Hemodynamics in Premature Infants

  • Rhee, Christopher J.;Rios, Danielle R.;Kaiser, Jeffrey R.;Brady, Ken
    • Neonatal Medicine
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Extremely low birth weight infants remain at increased risk of intraventricular hemorrhage from the fragile vascular bed of the germinal matrix; the roles of hypotension (ischemia) and reperfusion (hyperemia) in the development of intraventricular hemorrhage are still debated. Cerebrovascular pressure autoregulation protects the brain by maintaining constant cerebral blood flow despite changes in blood pressure. The ontogeny of cerebrovascular pressure autoregulation has not been well established and uncertainty remains about the optimal arterial blood pressure required to support brain perfusion. Another important aspect of premature cerebral hemodynamics is the critical closing pressure--the arterial blood pressure at which cerebral blood flow ceases. Interestingly, in premature infants, the critical closing pressure approximates the mean arterial blood pressure. Often in this unique population, cerebral blood flow occurs only during systole when the diastolic arterial blood pressure is equal to the critical closing pressure. Moreover, the diastolic closing margin, a metric of cerebral perfusion that normalizes diastolic arterial blood pressure to the critical closing pressure, may be a better measure than arterial blood pressure for defining cerebral perfusion in premature infants. Elevated diastolic closing margin has been associated with intraventricular hemorrhage. This review summarizes the current state of understanding of cerebral hemodynamics in premature infants.

Effects of Palmul-Tang on the Change of Cerebral Hemodynamics in Rats (팔물탕이 뇌혈류역학 변화에 미치는 효과)

  • Park Cheol Hun;Bae In Tae;Jeong Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1014-1020
    • /
    • 2004
  • The study was designed to investigate the effects of Palmul-Tang(PMT) on the change of cerebral hemodynamics [regional cerebral blood flow(rCBF), pial arterial diameter(PAD) and mean arterial blood pressure(MABP)] in normal and cerebral ischemic rats. The change of rCBF and MABP were determinated by laser-doppler flowmetry(LDF), and the change of PAD was determinated by video-microscopy. The results in normal rats were as follows ; PMT significantly increased rCBF and PAD in a dose-dependent, and PMT increased MABP in a dose-dependent. This results were suggested that PMT significantly increased rCBF by dilating PAD. The results in cerebral ischemic rats were as follows ; Both rCBF and PAD were significantly and stably increased by PMT(10㎎/㎏, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. The present authors thought that PMT had an anti-ischemic effect through the improvement of cerebral hemodynamics.

Preservative Effect of Leukocyte-Depleted Blood Cardioplegic Myocardium during Cardiac Surgery

  • Park, Seok-Cheol
    • Biomedical Science Letters
    • /
    • v.7 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • The present study was prospectively designed to assess the clinical effect of leukocyte-depleted blood cardioplegic solution (BCS) on myocardium during cardiac surgery with cardiopulmonary bypass (CPB). 30 adult patients scheduled for elective cardiac surgery were divided into control group (n=15), which infused routine BCS, and leukocyte-depleted (LD) group (n=15), which infused leukocyte-depleted BCS. Total and differential leukocyte counts in BCS, malondialdehyde (MDA) and troponin-T (TnT) concentrations in coronary sinus blood, and cardiac index (CI) were measured at preoperative and postoperative period. The BCS in LD group had less total leukocyte counts with neutropenia than that in control group (P<0.01). MDA (3.70$\pm$0.35 vs 5.90$\pm$0.57 $\mu$mol/L, p<0.05) and TnT (0.42$\pm$0.03 vs 0.60$\pm$0.09 ng/mL, p<0.05) were significantly low in LD group compared with control group, while LD group had higher CI (3.28$\pm$0.16 L/min/$m^2$, p<0.05) than control group (2.69$\pm$0.18 L/min/$m^2$). These results suggest that leukocyte-depleted blood cardioplegic solution has a better myocardial protective effect with less generations of oxygen free radicals and ischemia/reperfusion injury.

  • PDF

Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases

  • Xiao, Xiong;Liu, Hui-Xia;Shen, Kuo;Cao, Wei;Li, Xiao-Qiang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.471-481
    • /
    • 2017
  • The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of $Ca^{2+}$ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebro-vascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.

Neuroprotective Effect of Wogonin: Potential Roles of Inflammatory Cytokines

  • Piao, Hua-Zi;Jin, Shun-Ai;Chun, Hyang-Sook;Lee, Jae-Chul;Kim, Won-Ki
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.930-936
    • /
    • 2004
  • Wogonin (5,7-dihydroxy-8-methoxyflavone), an active component originated from the root of Scutellaria baicalensis Georgi, has been reported to possess antioxidant and anti-inflamma-tory properties. In this study, we investigated the neuroprotective effect of wogonin in a focal cerebral ischemia rat model. Wogonin markedly reduced the infarct volume after 2 h middle cerebral artery occlusion followed by 22 h reperfusion. Wogonin decreased the production of nitric oxide and inflammatory cytokines such as TNF-$\alpha$ and IL-6 in lipopolisaccharide-stimu-lated microglial cells. While wogonin reduced the activity of NF-$textsc{k}$B, it did not change the activ-ity of mitogen-activated protein kinases family members, p38, ERK and JNK. The lipopolisaccharide-stimulated production of NO and cytokines was significantly blocked by vari-ous kinds of NF-$textsc{k}$B inhibitors such as N-acetyl cysteine, pyrrolidinedithiocarbamate and MG-132. The data may indicate that wogonin has neuroprotective effect by preventing the over-activation of microglial cells, possibly by inactivating NF-$textsc{k}$B signaling pathway