Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.096

Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases  

Xiao, Xiong (Department of Pharmacology, School of Pharmacy, Fourth Military Medical University)
Liu, Hui-Xia (Department of Pharmacology, School of Pharmacy, Fourth Military Medical University)
Shen, Kuo (Cadet Brigade, School of Pharmacy, Fourth Military Medical University)
Cao, Wei (Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University)
Li, Xiao-Qiang (Department of Pharmacology, School of Pharmacy, Fourth Military Medical University)
Publication Information
Biomolecules & Therapeutics / v.25, no.5, 2017 , pp. 471-481 More about this Journal
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of $Ca^{2+}$ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebro-vascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Keywords
$Ca^{2+}$ signaling; Canonical transient receptor potential receptor; Cardiovascular disease; Cerebrovascular disease; Pathogenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cheng, K. T., Liu, X., Ong, H. L. and Ambudkar, I. S. (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J. Biol. Chem. 283, 12935-12940.   DOI
2 Christian, H. and Maik, G. (2011) Pharmacological Modulation of Diacylglycerol-Sensitive TRPC3/6/7 Channels. Curr. Pharm. Biotechnol. 12, 35-41.   DOI
3 Cosens, D. J. and Manning, A. (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285-287.   DOI
4 Dietrich, A., Chubanov, V., Kalwa, H., Rost, B. R. and Gudermann, T. (2006) Cation channels of the transient receptor potential superfamily:their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol. Ther. 112, 744-760.   DOI
5 Dietrich, A., Kalwa, H. and Gudermann, T. (2010) TRPC channels in vascular cell function. Thromb. Haemost. 103, 262-270.   DOI
6 Dietrich, A., Mederos, Y. S. M., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., Obst, M., Yildirim, E., Salanova, B., Kalwa, H., Essin, K., Pinkenburg, O., Luft, F. C., Gudermann, T. and Birnbaumer, L. (2005) Increased vascular smooth muscle contractility in $Trpc6^{-/-}mice$. Mol. Cell. Biol. 25, 6980-6989.   DOI
7 Du, W., Huang, J., Yao, H., Zhou, K., Duan, B. and Wang, Y. (2010) Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J. Clin. Invest. 120, 3480-3492.   DOI
8 Dyachenko, V., Husse, B., Rueckschloss, U. and Isenberg, G. (2009) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45, 38-54.   DOI
9 Eder, P. and Molkentin, J. D. (2011) TRPC channels as effectors of cardiac hypertrophy. Circ. Res. 108, 265-272.   DOI
10 Kinoshita, H., Kuwahara, K., Nishida, M., Jian, Z., Rong, X., Kiyonaka, S., Kuwabara, Y., Kurose, H., Inoue, R., Mori, Y., Li, Y., Nakagawa, Y., Usami, S., Fujiwara, M., Yamada, Y., Minami, T., Ueshima, K. and Nakao, K. (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ. Res. 106, 1849-1860.   DOI
11 Kiyonaka, S., Kato, K., Nishida, M., Mio, K., Numaga, T., Sawaguchi, Y., Yoshida, T., Wakamori, M., Mori, E., Numata, T., Ishii, M., Takemoto, H., Ojida, A., Watanabe, K., Uemura, A., Kurose, H., Morii, T., Kobayashi, T., Sato, Y., Sato, C., Hamachi, I. and Mori, Y. (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc. Natl. Acad. Sci. U.S.A. 106, 5400-5405.   DOI
12 Wang, J., Jiang, Q., Wan, L., Yang, K., Zhang, Y., Chen, Y., Wang, E., Lai, N., Zhao, L., Jiang, H., Sun, Y., Zhong, N., Ran, P. and Lu, W. (2013a) Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. Am. J. Respir. Cell Mol. Biol. 48, 125-134.   DOI
13 Kuwahara, K., Wang, Y., McAnally, J., Richardson, J. A., Bassel-Duby, R., Hill, J. A. and Olson, E. N. (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest. 116, 3114-3126.   DOI
14 Kwan, H. Y., Huang, Y. and Yao, X. (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc. Natl. Acad. Sci. U.S.A. 101, 2625-2630.   DOI
15 Leypold, B. G., Yu, C. R., Leinders-Zufall, T., Kim, M. M., Zufall, F. and Axel, R. (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl. Acad. Sci. U.S.A. 99, 6376-6381.   DOI
16 Wakili, R., Voigt, N., Kaab, S., Dobrev, D. and Nattel, S. (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J. Clin. Invest. 121, 2955-2968.   DOI
17 Wang, J., Fu, X., Yang, K., Jiang, Q., Chen, Y., Jia, J., Duan, X., Wang, E. W., He, J., Ran, P., Zhong, N., Semenza, G. L. and Lu, W. (2015) Hypoxia inducible factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced increase of TRPC expression in PASMCs. Cardiovasc. Res. 107, 108-118.   DOI
18 Wang, J., Weigand, L., Lu, W., Sylvester, J. T., Semenza, G. L. and Shimoda, L. A. (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular $Ca^{2+}$ in pulmonary arterial smooth muscle cells. Circ. Res. 98, 1528-1537.   DOI
19 Wang, Z. T., Wang, Z. and Hu, Y. W. (2016) Possible roles of plateletderived microparticles in atherosclerosis. Atherosclerosis 248, 10-16.   DOI
20 Liu, D., Maier, A., Scholze, A., Rauch, U., Boltzen, U., Zhao, Z., Zhu, Z. and Tepel, M. (2008) High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 28, 746-751.   DOI
21 Liu, D., Scholze, A., Zhu, Z., Krueger, K., Thilo, F., Burkert, A., Streffer, K., Holz, S., Harteneck, C., Zidek, W. and Tepel, M. (2006) Transient receptor potential channels in essential hypertension. J. Hypertens. 24, 1105-1114.   DOI
22 Liu, D., Yang, D., He, H., Chen, X., Cao, T., Feng, X., Ma, L., Luo, Z., Wang, L., Yan, Z., Zhu, Z. and Tepel, M. (2009) Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53, 70-76.   DOI
23 Liu, D. Y., Scholze, A., Kreutz, R., Wehland-von-Trebra, M., Zidek, W., Zhu, Z. M. and Tepel, M. (2007a) Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical Type 3 channels. Am. J. Hypertens. 20, 1111-1118.   DOI
24 Lu, W., Wang, J., Shimoda, L. A. and Sylvester, J. T. (2008) Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in $Ca^{2+}$ responses to hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L104-L113.   DOI
25 Liu, D. Y., Thilo, F., Scholze, A., Wittstock, A., Zhao, Z. G., Harteneck, C., Zidek, W., Zhu, Z. M. and Tepel, M. (2007b) Increased storeoperated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx in monocytes is mediated by transient receptor potential canonical channels in human essential hypertension. J. Hypertens. 25, 799-808.   DOI
26 Liu, H., Yang, L., Chen, K. H., Sun, H. Y., Jin, M. W., Xiao, G. S., Wang, Y. and Li, G. R. (2016) SKF-96365 blocks human ether-ago-go-related gene potassium channels stably expressed in HEK 293 cells. Pharmacol. Res. 104, 61-69.   DOI
27 Liu, X. R., Zhang, M. F., Yang, N., Liu, Q., Wang, R. X., Cao, Y. N., Yang, X. R., Sham, J. S. and Lin, M. J. (2012) Enhanced storeoperated $Ca^{2+}$ entry and TRPC channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am. J. Physiol., Cell Physiol. 302, C77-C87.   DOI
28 Loga, F., Domes, K., Freichel, M., Flockerzi, V., Dietrich, A., Birnbaumer, L., Hofmann, F. and Wegener, J. W. (2013) The role of cGMP/cGKI signalling and Trpc channels in regulation of vascular tone. Cardiovasc. Res. 100, 280-287.   DOI
29 Lu, W., Ran, P., Zhang, D., Peng, G., Li, B., Zhong, N. and Wang, J. (2010) Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. Am. J. Physiol., Cell Physiol. 298, C114-C123.   DOI
30 Nakayama, H., Wilkin, B. J., Bodi, I. and Molkentin, J. D. (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J. 20, 1660-1670.   DOI
31 Nilius, B. and Voets, T. (2005) TRP channels: a TR(I)P through a world of multifunctional cation channels. Pflugers Arch. 451, 1-10.   DOI
32 Nattel, S. (2011) From guidelines to bench: implications of unresolved clinical issues for basic investigations of atrial fibrillation mechanisms. Can. J. Cardiol. 27, 19-26.   DOI
33 Ng, L. C. and Gurney, A. M. (2001) Store-operated channels mediate $Ca^{2+}$ influx and contraction in rat pulmonary artery. Circ. Res. 89, 923-929.   DOI
34 Nilius, B., Owsianik, G., Voets, T. and Peters, J. A. (2007) Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165-217.   DOI
35 Ohba, T., Watanabe, H., Murakami, M., Takahashi, Y., Iino, K., Kuromitsu, S., Mori, Y., Ono, K., Iijima, T. and Ito, H. (2007) Upregula tion of TRPC1 in the development of cardiac hypertrophy. J. Mol. Cell. Cardiol. 42, 498-507.   DOI
36 Ohga, K., Takezawa, R., Arakida, Y., Shimizu, Y. and Ishikawa, J. (2008) Characterization of YM-58483/BTP2, a novel store-operated $Ca^{2+}$ entry blocker, on T cell-mediated immune responses in vivo. Int. Immunopharmacol. 8, 1787-1792.   DOI
37 Seo, K., Rainer, P. P., Shalkey Hahn, V., Lee, D. I., Jo, S. H., Andersen, A., Liu, T., Xu, X., Willette, R. N., Lepore, J. J., Marino, J. P., Jr., Birnbaumer, L., Schnackenberg, C. G. and Kass, D. A. (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 111, 1551-1556.   DOI
38 Satoh, S., Tanaka, H., Ueda, Y., Oyama, J., Sugano, M., Sumimoto, H., Mori, Y. and Makino, N. (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated $Ca^{2+}$ channel mediating angiotensin II-induced myocardial apoptosis. Mol. Cell. Biochem. 294, 205-215.   DOI
39 Schaefer, M., Plant, T. D., Obukhov, A. G., Hofmann, T., Gudermann, T. and Schultz, G. (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517-17526.   DOI
40 Schleifer, H., Doleschal, B., Lichtenegger, M., Oppenrieder, R., Derler, I., Frischauf, I., Glasnov, T. N., Kappe, C. O., Romanin, C. and Groschner, K. (2012) Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated $Ca^{2+}$ entry pathways. Br. J. Pharmacol. 167, 1712-1722.   DOI
41 Seth, M., Zhang, Z. S., Mao, L., Graham, V., Burch, J., Stiber, J., Tsiokas, L., Winn, M., Abramowitz, J., Rockman, H. A., Birnbaumer, L. and Rosenberg, P. (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ. Res. 105, 1023-1030.   DOI
42 Shan, D., Marchase, R. B. and Chatham, J. C. (2008) Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am. J. Physiol., Cell Physiol. 294, C833-C841.   DOI
43 Smedlund, K. and Vazquez, G. (2008) Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 2049-2055.   DOI
44 Shaywitz, A. J. and Greenberg, M. E. (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821-861.   DOI
45 Shi, J., Ju, M., Abramowitz, J., Large, W. A., Birnbaumer, L. and Albert, A. P. (2012) TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: comparative study of wild-type and $Trpc1^{-/-}$ mice. FASEB J. 26, 409-419.   DOI
46 Shi, J., Miralles, F., Birnbaumer, L., Large, W. A. and Albert, A. P. (2016) Store depletion induces Galphaq-mediated PLCbeta1 activity to stimulate TRPC1 channels in vascular smooth muscle cells. FASEB J. 30, 702-715.   DOI
47 Short, A. D., Bian, J., Ghosh, T. K., Waldron, R. T., Rybak, S. L. and Gill, D. L. (1993) Intracellular $Ca^{2+}$ pool content is linked to control of cell growth. Proceedings of the National Academy of Sciences of the United States of America 90, 4986-4990.   DOI
48 Smedlund, K., Tano, J. Y. and Vazquez, G. (2010) The constitutive function of native TRPC3 channels modulates vascular cell adhesion molecule-1 expression in coronary endothelial cells through nuclear factor ${\kappa}B$ signaling. Circ. Res. 106, 1479-1488.   DOI
49 Soboloff, J., Spassova, M., Xu, W., He, L. P., Cuesta, N. and Gill, D. L. (2005) Role of endogenous TRPC6 channels in $Ca^{2+}$ signal generation in A7r5 smooth muscle cells. J. Biol. Chem. 280, 39786-39794.   DOI
50 Smedlund, K. B., Birnbaumer, L. and Vazquez, G. (2015) Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. Proc. Natl. Acad. Sci. U.S.A. 112, E2201-E2206.   DOI
51 Takahashi, Y., Watanabe, H., Murakami, M., Ohba, T., Radovanovic, M., Ono, K., Iijima, T. and Ito, H. (2007) Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis 195, 287-296.   DOI
52 Tabas, I., Tall, A. and Accili, D. (2010) The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circ. Res. 106, 58-67.   DOI
53 Tai, Y., Feng, S., Ge, R., Du, W., Zhang, X., He, Z. and Wang, Y. (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J. Cell Sci. 121, 2301-2307.   DOI
54 Takahashi, S., Lin, H., Geshi, N., Mori, Y., Kawarabayashi, Y., Takami, N., Mori, M. X., Honda, A. and Inoue, R. (2008) Nitric oxide-cGMPprotein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J. Physiol. 586, 4209-4223.   DOI
55 Tano, J. Y., Lee, R. H. and Vazquez, G. (2012) Macrophage function in atherosclerosis: potential roles of TRP channels. Channels (Austin) 6, 141-148.   DOI
56 Bowman, C. L., Gottlieb, P. A., Suchyna, T. M., Murphy, Y. K. and Sachs, F. (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49, 249-270.   DOI
57 Tauseef, M., Farazuddin, M., Sukriti, S., Rajput, C., Meyer, J. O., Ramasamy, S. K. and Mehta, D. (2016) Transient receptor potential channel 1 maintains adherens junction plasticity by suppressing sphingosine kinase 1 expression to induce endothelial hyperpermeability. FASEB J. 30, 102-110.   DOI
58 Thilo, F., Loddenkemper, C., Berg, E., Zidek, W. and Tepel, M. (2009) Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension. Mod. Pathol. 22, 426-430.   DOI
59 Stowers, L., Holy, T. E., Meister, M., Dulac, C. and Koentges, G. (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493-1500.   DOI
60 Birnbaumer, L., Zhu, X., Jiang, M., Boulay, G., Peyton, M., Vannier, B., Brown, D., Platano, D., Sadeghi, H., Stefani, E. and Birnbaumer, M. (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 15195-15202.   DOI
61 Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W. and Sheu, S. S. (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol., Cell Physiol. 287, C817-C833.   DOI
62 Bush, E. W., Hood, D. B., Papst, P. J., Chapo, J. A., Minobe, W., Bristow, M. R., Olson, E. N. and McKinsey, T. A. (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J. Biol. Chem. 281, 33487-33496.   DOI
63 Carafoli, E. (2002) Calcium signaling: a tale for all seasons. Proc. Natl. Acad. Sci. U.S.A. 99, 1115-1122.   DOI
64 Chaudhuri, P., Rosenbaum, M. A., Sinharoy, P., Damron, D. S., Birnbaumer, L. and Graham, L. M. (2016) Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc. Natl. Acad. Sci. U.S.A. 113, 2110-2115.   DOI
65 Chen, J., Crossland, R. F., Noorani, M. M. and Marrelli, S. P. (2009) Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am. J. Physiol. Heart Circ. Physiol. 297, H417-H424.   DOI
66 Malczyk, M., Veith, C., Fuchs, B., Hofmann, K., Storch, U., Schermuly, R. T., Witzenrath, M., Ahlbrecht, K., Fecher-Trost, C., Flockerzi, V., Ghofrani, H. A., Grimminger, F., Seeger, W., Gudermann, T., Dietrich, A. and Weissmann, N. (2013) Classical transient receptor potential channel 1 in hypoxia-induced pulmonary hypertension. Am. J. Respir. Crit. Care Med. 188, 1451-1459.   DOI
67 Chen, X., Yang, D., Ma, S., He, H., Luo, Z., Feng, X., Cao, T., Ma, L., Yan, Z., Liu, D., Tepel, M. and Zhu, Z. (2010) Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels. J. Cell. Mol. Med. 14, 2483-2494.   DOI
68 Lin, M. J., Leung, G. P., Zhang, W. M., Yang, X. R., Yip, K. P., Tse, C. M. and Sham, J. S. (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated $Ca^{2+}$ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ. Res. 95, 496-505.   DOI
69 Lin, Y., Chen, F., Zhang, J., Wang, T., Wei, X., Wu, J., Feng, Y., Dai, Z. and Wu, Q. (2013) Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J. Mol. Neurosci. 50, 504-513.   DOI
70 Maier, T., Follmann, M., Hessler, G., Kleemann, H. W., Hachtel, S., Fuchs, B., Weissmann, N., Linz, W., Schmidt, T., Lohn, M., Schroeter, K., Wang, L., Rutten, H. and Strubing, C. (2015) Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. Br. J. Pharmacol. 172, 3650-3660.   DOI
71 Merritt, J. E., Armstrong, W. P., Benham, C. D., Hallam, T. J., Jacob, R., Jaxa-Chamiec, A., Leigh, B. K., McCarthy, S. A., Moores, K. E. and Rink, T. J. (1990) SK&F 96365, a novel inhibitor of receptormediated calcium entry. Biochem. J. 271, 515-522.   DOI
72 Minke, B. (2006) TRP channels and $Ca^{2+}$ signaling. Cell Calcium 40, 261-275.   DOI
73 Montell, C. (2005) Drosophila TRP channels. Pflugers Arch. 451, 19-28.   DOI
74 Montell, C., Birnbaumer, L., Flockerzi, V., Bindels, R. J., Bruford, E. A., Caterina, M. J., Clapham, D. E., Harteneck, C., Heller, S., Julius, D., Kojima, I., Mori, Y., Penner, R., Prawitt, D., Scharenberg, A. M., Schultz, G., Shimizu, N. and Zhu, M. X. (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 9, 229-231.   DOI
75 Nakashima, H. and Kumagai, K. (2007) Reverse-remodeling effects of angiotensin II type 1 receptor blocker in a canine atrial fibrillation model. Circ. J. 71, 1977-1982.   DOI
76 Plant, T. D. and Schaefer, M. (2003) TRPC4 and TRPC5: receptoroperated $Ca^{2+}$-permeable nonselective cation channels. Cell Calcium 33, 441-450.   DOI
77 Okada, T., Inoue, R., Yamazaki, K., Maeda, A., Kurosaki, T., Yamakuni, T., Tanaka, I., Shimizu, S., Ikenaka, K., Imoto, K. and Mori, Y. (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. $Ca^{2+}$-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J. Biol. Chem. 274, 27359-27370.   DOI
78 Onohara, N., Nishida, M., Inoue, R., Kobayashi, H., Sumimoto, H., Sato, Y., Mori, Y., Nagao, T. and Kurose, H. (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 25, 5305-5316.   DOI
79 Philipp, S., Wissenbach, U. and Flockerzi, V. (2000) Molecular biology of calcium channels. In Calcium Signaling (J. W. J. Putney, Ed.), pp. 321-342. CRC Press, Boca Raton.
80 Piper, H. M., Abdallah, Y. and Schafer, C. (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc. Res. 61, 365-371.   DOI
81 Rosenbaum, M. A., Chaudhuri, P. and Graham, L. M. (2015) Hypercholesterolemia inhibits re-endothelialization of arterial injuries by TRPC channel activation. J. Vasc. Surg. 62, 1040-1047.e2.   DOI
82 Poteser, M., Graziani, A., Rosker, C., Eder, P., Derler, I., Kahr, H., Zhu, M. X., Romanin, C. and Groschner, K. (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J. Biol. Chem. 281, 13588-13595.   DOI
83 Putney, J. W., Jr. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7, 1-12.   DOI
84 Riccio, A., Medhurst, A. D., Mattei, C., Kelsell, R. E., Calver, A. R., Randall, A. D., Benham, C. D. and Pangalos, M. N. (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res. Mol. Brain Res. 109, 95-104.   DOI
85 Rowell, J., Koitabashi, N. and Kass, D. A. (2010) TRP-ing up heart and vessels: canonical transient receptor potential channels and cardiovascular disease. J. Cardiovasc. Transl. Res. 3, 516-524.   DOI
86 Sabourin, J., Robin, E. and Raddatz, E. (2011) A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc. Res. 92, 226-236.   DOI
87 Fuchs, B., Dietrich, A., Gudermann, T., Kalwa, H., Grimminger, F. and Weissmann, N. (2010) The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction. Adv. Exp. Med. Biol. 661, 187-200.
88 Edwards, J. M., Neeb, Z. P., Alloosh, M. A., Long, X., Bratz, I. N., Peller, C. R., Byrd, J. P., Kumar, S., Obukhov, A. G. and Sturek, M. (2010) Exercise training decreases store-operated $Ca^{2+}$ entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovasc. Res. 85, 631-640.   DOI
89 Farooqi, A. A., Riaz, A. M. and Bhatti, S. (2013) TRPC signaling mechanisms and therapeutic opportunities: trapdoors are monitored by gatekeepers. Pak. J. Pharm. Sci. 26, 847-852.
90 Franz, M. R. and Bode, F. (2003) Mechano-electrical feedback underlying arrhythmias: the atrial fibrillation case. Prog. Biophys. Mol. Biol. 82, 163-174.   DOI
91 Golovina, V. A., Platoshyn, O., Bailey, C. L., Wang, J., Limsuwan, A., Sweeney, M., Rubin, L. J. and Yuan, J. X. (2001) Upregulated TRP and enhanced capacitative $Ca^{2+}$ entry in human pulmonary artery myocytes during proliferation. Am. J. Physiol. Heart Circ. Physiol. 280, H746-H755.   DOI
92 Gopal, S., Sogaard, P., Multhaupt, H. A., Pataki, C., Okina, E., Xian, X., Pedersen, M. E., Stevens, T., Griesbeck, O., Park, P. W., Pocock, R. and Couchman, J. R. (2015) Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J. Cell Biol. 210, 1199-1211.   DOI
93 Harada, M., Luo, X., Qi, X. Y., Tadevosyan, A., Maguy, A., Ordog, B., Ledoux, J., Kato, T., Naud, P., Voigt, N., Shi, Y., Kamiya, K., Murohara, T., Kodama, I., Tardif, J. C., Schotten, U., Van Wagoner, D. R., Dobrev, D. and Nattel, S. (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126, 2051-2064.   DOI
94 Iwasaki, Y. K., Nishida, K., Kato, T. and Nattel, S. (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124, 2264-2274.   DOI
95 Hofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T. and Schultz, G. (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259-263.   DOI
96 Inoue, R., Jensen, L. J., Jian, Z., Shi, J., Hai, L., Lurie, A. I., Henriksen, F. H., Salomonsson, M., Morita, H., Kawarabayashi, Y., Mori, M., Mori, Y. and Ito, Y. (2009) Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ. Res. 104, 1399-1409.   DOI
97 Inoue, R., Jensen, L. J., Shi, J., Morita, H., Nishida, M., Honda, A. and Ito, Y. (2006) Transient receptor potential channels in cardiovascu lar function and disease. Circ. Res. 99, 119-131.   DOI
98 Kukkonen, J. P. (2011) A menage a trois made in heaven: G-proteincoupled receptors, lipids and TRP channels. Cell Calcium 50, 9-26.   DOI
99 Koenig, S., Schernthaner, M., Maechler, H., Kappe, C. O., Glasnov, T. N., Hoefler, G., Braune, M., Wittchow, E. and Groschner, K. (2013) A TRPC3 blocker, ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-c arboxylate (Pyr3), prevents stentinduced arterial remodeling. J. Pharmacol. Exp. Ther. 344, 33-40.   DOI
100 Kuhr, F. K., Smith, K. A., Song, M. Y., Levitan, I. and Yuan, J. X. (2012) New mechanisms of pulmonary arterial hypertension: role of $Ca^{2+}$ signaling. Am. J. Physiol. Heart Circ. Physiol. 302, H1546-H1562.   DOI
101 Kumar, B., Dreja, K., Shah, S. S., Cheong, A., Xu, S. Z., Sukumar, P., Naylor, J., Forte, A., Cipollaro, M., McHugh, D., Kingston, P. A., Heagerty, A. M., Munsch, C. M., Bergdahl, A., Hultgardh-Nilsson, A., Gomez, M. F., Porter, K. E., Hellstrand, P. and Beech, D. J. (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ. Res. 98, 557-563.   DOI
102 Wu, X., Eder, P., Chang, B. and Molkentin, J. D. (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 107, 7000-7005.   DOI
103 Toth, P., Csiszar, A., Tucsek, Z., Sosnowska, D., Gautam, T., Koller, A., Schwartzman, M. L., Sonntag, W. E. and Ungvari, Z. (2013) Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressureinduced $Ca^{2+}$ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am. J. Physiol. Heart Circ. Physiol. 305, H1698-H1708.   DOI
104 Venkatachalam, K., Zheng, F. and Gill, D. L. (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J. Biol. Chem. 278, 29031-29040.   DOI
105 Weber, E. W., Han, F., Tauseef, M., Birnbaumer, L., Mehta, D. and Muller, W. A. (2015) TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. J. Exp. Med. 212, 1883-1899.   DOI
106 Welsh, D. G., Morielli, A. D., Nelson, M. T. and Brayden, J. E. (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res. 90, 248-250.   DOI
107 Winn, M. P., Conlon, P. J., Lynn, K. L., Farrington, M. K., Creazzo, T., Hawkins, A. F., Daskalakis, N., Kwan, S. Y., Ebersviller, S., Burchette, J. L., Pericak-Vance, M. A., Howell, D. N., Vance, J. M. and Rosenberg, P. B. (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801-1804.   DOI
108 Wuensch, T., Thilo, F., Krueger, K., Scholze, A., Ristow, M. and Tepel, M. (2010) High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes. Diabetes 59, 844-849.   DOI
109 Xia, Y., Yang, X. R., Fu, Z., Paudel, O., Abramowitz, J., Birnbaumer, L. and Sham, J. S. (2014) Classical transient receptor potential 1 and 6 contribute to hypoxic pulmonary hypertension through differential regulation of pulmonary vascular functions. Hypertension 63, 173-180.   DOI
110 Xu, S. Z. and Beech, D. J. (2001) TrpC1 is a membrane-spanning subunit of store-operated $Ca^{2+}$ channels in native vascular smooth muscle cells. Circ. Res. 88, 84-87.   DOI
111 Bergdahl, A., Gomez, M. F., Dreja, K., Xu, S. Z., Adner, M., Beech, D. J., Broman, J., Hellstrand, P. and Sward, K. (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated $Ca^{2+}$ entry dependent on TRPC1. Circ. Res. 93, 839-847.   DOI
112 Anderson, M., Kim, E. Y., Hagmann, H., Benzing, T. and Dryer, S. E. (2013) Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am. J. Physiol., Cell Physiol. 305, C276-C289.   DOI
113 Bae, Y. M., Kim, A., Lee, Y. J., Lim, W., Noh, Y. H., Kim, E. J., Kim, J., Kim, T. K., Park, S. W., Kim, B., Cho, S. I., Kim, D. K. and Ho, W. K. (2007) Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J. Hypertens. 25, 809-817.   DOI
114 Beamish, J. A., He, P., Kottke-Marchant, K. and Marchant, R. E. (2010) Molecular regulation of contractile smooth muscle cell phenotype:implications for vascular tissue engineering. Tissue Eng. Part B Rev. 16, 467-491.   DOI
115 Berridge, M. J., Bootman, M. D. and Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-529.
116 Zhang, Y., Lu, W., Yang, K., Xu, L., Lai, N., Tian, L., Jiang, Q., Duan, X., Chen, M. and Wang, J. (2013) Bone morphogenetic protein 2 decreases TRPC expression, store-operated $Ca^{2+}$ entry, and basal [$Ca^{2+}$]i in rat distal pulmonary arterial smooth muscle cells. Am. J. Physiol., Cell Physiol. 304, C833-C843.   DOI
117 Yu, Y., Fantozzi, I., Remillard, C. V., Landsberg, J. W., Kunichika, N., Platoshyn, O., Tigno, D. D., Thistlethwaite, P. A., Rubin, L. J. and Yuan, J. X. (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc. Natl. Acad. Sci. U.S.A. 101, 13861-13866.   DOI
118 Yue, Z., Xie, J., Yu, A. S., Stock, J., Du, J. and Yue, L. (2015) Role of TRP channels in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 308, H157-H182.   DOI
119 Zhang, S., Remillard, C. V., Fantozzi, I. and Yuan, J. X. (2004) ATPinduced mitogenesis is mediated by cyclic AMP response elementbinding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am. J. Physiol., Cell Physiol. 287, C1192-C1201.   DOI
120 Zhang, Y., Wang, Y., Yang, K., Tian, L., Fu, X., Wang, Y., Sun, Y., Jiang, Q., Lu, W. and Wang, J. (2014) BMP4 increases the expression of TRPC and basal [$Ca^{2+}$]i via the p38MAPK and ERK1/2 pathways independent of BMPRII in PASMCs. PLoS ONE 9, e112695.   DOI
121 Zhu, D. Y., Lau, L., Liu, S. H., Wei, J. S. and Lu, Y. M. (2004) Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 101, 9453-9457.   DOI
122 Zhu, X., Chu, P. B., Peyton, M. and Birnbaumer, L. (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett. 373, 193-198.   DOI