Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.4.274

Antioxidant enzymes as redox-based biomarkers: a brief review  

Yang, Hee-Young (Department of Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University)
Lee, Tae-Hoon (Department of Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University)
Publication Information
BMB Reports / v.48, no.4, 2015 , pp. 200-208 More about this Journal
Abstract
The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208]
Keywords
Antioxidant enzyme; Cysteine oxidation; Disease; ROS; Redox proteomics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Matte A, Low PS, Turrini F et al (2010) Peroxiredoxin-2 expression is increased in beta-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress. Free Radic Biol Med 49, 457-466   DOI   ScienceOn
2 Lee TH, Kim SU, Yu SL et al (2003) Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101, 5033-5038   DOI   ScienceOn
3 Yang HY, Kwon J, Choi HI et al (2012) In-depth analysis of cysteine oxidation by the RBC proteome: advantage of peroxiredoxin II knockout mice. Proteomics 12, 101-112   DOI   ScienceOn
4 Fu C, Wu C, Liu T et al (2009) Elucidation of thioredoxin target protein networks in mouse. Mol Cell Proteomics 8, 1674-1687   DOI   ScienceOn
5 Alfadda AA and Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012, 936486   DOI
6 Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82, 47-95   DOI   ScienceOn
7 Tsantes AE, Bonovas S, Travlou A and Sitaras NM (2006) Redox imbalance, macrocytosis, and RBC homeostasis. Antioxid Redox Signal 8, 1205-1216   DOI   ScienceOn
8 Nickel C, Rahlfs S, Deponte M, Koncarevic S and Becker K (2006) Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 8, 1227-1239   DOI   ScienceOn
9 Dopheide JF, Doppler C, Scheer M et al (2013) Critical limb ischaemia is characterised by an increased production of whole blood reactive oxygen species and expression of TREM-1 on neutrophils. Atherosclerosis 229, 396-403   DOI   ScienceOn
10 Wolff SP (1993) Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49, 642-652
11 Park JG and Oh GT (2011) The role of peroxidases in the pathogenesis of atherosclerosis. BMB Rep 44, 497-505   DOI   ScienceOn
12 Leitemperguer MR, Tatsch E, Kober H, De Carvalho JA, Moresco RN and Da Silva JE (2014) Assessment of ischemia-modified albumin levels in patients with rheumatoid arthritis. Clin Lab 60, 1065-1070
13 Pierola J, Alemany A, Yanez A et al (2011) NADPH oxidase p22phox polymorphisms and oxidative stress in patients with obstructive sleep apnoea. Respir Med 105, 1748-1754   DOI   ScienceOn
14 Hsieh HL and Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int 2013, 484613
15 Milani P, Ambrosi G, Gammoh O, Blandini F and Cereda C (2013) SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev 2013, 836760   DOI
16 Saeidnia S and Abdollahi M (2013) Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol 273, 442-455   DOI   ScienceOn
17 Rinalducci S, Murgiano L and Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59, 3781-3801   DOI   ScienceOn
18 Kim YM, Kim KE, Koh GY, Ho YS and Lee KJ (2006) Hydrogen peroxide produced by angiopoietin-1 mediates angiogenesis. Cancer Res 66, 6167-6174   DOI   ScienceOn
19 Marino SM and Gladyshev VN (2012) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287, 4419-4425   DOI
20 Giannoni E, Buricchi F, Raugei G, Ramponi G and Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25, 6391-6403   DOI   ScienceOn
21 Hansen RE and Winther JR (2009) An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal Biochem 394, 147-158   DOI   ScienceOn
22 Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882-1883   DOI   ScienceOn
23 Butterfield DA, Gu L, Di Domenico F and Robinson RA (2014) Mass spectrometry and redox proteomics: applications in disease. Mass Spectrom Rev 33, 277-301   DOI   ScienceOn
24 Kim HJ, Ha S, Lee HY and Lee KJ (2014) ROSics: Chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrom Rev [Epub ahead of print]
25 Kim JR, Yoon HW, Kwon KS, Lee SR and Rhee SG (2000) Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH. Anal Biochem 283, 214-221   DOI   ScienceOn
26 Charles RL, Schroder E, May G et al (2007) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6, 1473-1484   DOI   ScienceOn
27 Mates JM, Perez-Gomez C and Nunez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32, 595-603   DOI   ScienceOn
28 Jeong J, Kim Y, Kyung Seong J and Lee KJ (2012) Comprehensive identification of novel post-translational modifications in cellular peroxiredoxin 6. Proteomics 12, 1452-1462   DOI   ScienceOn
29 Kinnula VL, Paakko P and Soini Y (2004) Antioxidant enzymes and redox regulating thiol proteins in malignancies of human lung. FEBS Lett 569, 1-6   DOI   ScienceOn
30 Scibior-Bentkowska D and Czeczot H (2009) [Cancer cells and oxidative stress]. Postepy Hig Med Dosw (Online) 63, 58-72
31 Thongboonkerd V and Malasit P (2005) Renal and urinary proteomics: current applications and challenges. Proteomics 5, 1033-1042   DOI   ScienceOn
32 Cesaratto L, Vascotto C, D'Ambrosio C et al (2005) Overoxidation of peroxiredoxins as an immediate and sensitive marker of oxidative stress in HepG2 cells and its application to the redox effects induced by ischemia/reperfusion in human liver. Free Radic Res 39, 255-268   DOI   ScienceOn
33 Wu CL, Chou HC, Cheng CS et al (2012) Proteomic analysis of UVB-induced protein expression- and redox-dependent changes in skin fibroblasts using lysine- and cysteinelabeling two-dimensional difference gel electrophoresis. J Proteomics 75, 1991-2014   DOI   ScienceOn
34 Tsaytler PA, C O'Flaherty M, Sakharov DV, Krijgsveld J and Egmond MR (2008) Immediate protein targets of photodynamic treatment in carcinoma cells. J Proteome Res 7, 3868-3878   DOI   ScienceOn
35 Tyther R, Ahmeda A, Johns E, McDonagh B and Sheehan D (2010) Proteomic profiling of perturbed protein sulfenation in renal medulla of the spontaneously hypertensive rat. J Proteome Res 9, 2678-2687   DOI   ScienceOn
36 Li T, Li J, Liu J et al (2009) Polymerized placenta hemoglobin attenuates ischemia/reperfusion injury and restores the nitroso-redox balance in isolated rat heart. Free Radic Biol Med 46, 397-405   DOI   ScienceOn
37 Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS and Li L (2005) Oxidative modifications and aggregation of Cu, Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J Biol Chem 280, 11648-11655   DOI   ScienceOn
38 Matsuyama Y, Terawaki H, Terada T and Era S (2009) Albumin thiol oxidation and serum protein carbonyl formation are progressively enhanced with advancing stages of chronic kidney disease. Clin Exp Nephrol 13, 308-315   DOI
39 Elias-Miró M, Jiménez-Castro MB, Rodés J and Peralta C (2013) Current knowledge on oxidative stress in hepatic ischemia/reperfusion. Free Radic Res 47, 555-568   DOI   ScienceOn
40 Wilson CH, Zeile S, Chataway T, Nieuwenhuijs VB, Padbury RT and Barritt GJ (2011) Increased expression of peroxiredoxin 1 and identification of a novel lipid-metabolizing enzyme in the early phase of liver ischemia reperfusion injury. Proteomics 11, 4385-4396   DOI   ScienceOn
41 Kohr MJ, Sun J, Aponte A et al (2011) Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ Res 108, 418-426   DOI   ScienceOn
42 Sun J and Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106, 285-296   DOI   ScienceOn
43 Butterfield DA, Perluigi M, Reed T et al (2012) Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 17, 1610-1655   DOI   ScienceOn
44 Thom SR, Bhopale VM, Milovanova TN, Yang M and Bogush M (2012) Thioredoxin reductase linked to cytoskeleton by focal adhesion kinase reverses actin S-nitrosylation and restores neutrophil beta(2) integrin function. J Biol Chem 287, 30346-30357   DOI
45 Perluigi M, Sultana R, Cenini G et al (2009) Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer's disease: Role of lipid peroxidation in Alzheimer's disease pathogenesis. Proteomics Clin Appl 3, 682-693   DOI   ScienceOn
46 Sultana R, Reed T, Perluigi M, Coccia R, Pierce WM and Butterfield DA (2007) Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J Cell Mol Med 11, 839-851   DOI   ScienceOn
47 Anantharaman M, Tangpong J, Keller JN et al (2006) Betaamyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLH/NLH X PS-1P264L/P264L double knock-in mouse model of Alzheimer's disease. Am J Pathol 168, 1608-1618   DOI   ScienceOn
48 Reed TT, Pierce WM, Markesbery WR and Butterfield DA (2009) Proteomic identification of HNE-bound proteins in early Alzheimer disease: Insights into the role of lipid peroxidation in the progression of AD. Brain Res 1274, 66-76   DOI   ScienceOn
49 Perluigi M, Di Domenico F, Giorgi A et al (2010) Redox proteomics in aging rat brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J Neurosci Res 88, 3498-3507   DOI   ScienceOn
50 Go YM and Jones DP (2013) The redox proteome. J Biol Chem 288, 26512-26520   DOI   ScienceOn
51 Saitoh M, Nishitoh H, Fujii M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17, 2596-2606   DOI   ScienceOn
52 Finkelstein AE, Walz DT, Batista V, Mizraji M, Roisman F and Misher A (1976) Auranofin. New oral gold compound for treatment of rheumatoid arthritis. Ann Rheum Dis 35, 251-257   DOI   ScienceOn
53 Marchand C, Le Maréchal P, Meyer Y and Decottignies P (2006) Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin. Proteomics 6, 6528-6537   DOI   ScienceOn
54 Hägglund P, Bunkenborg J, Maeda K and Svensson B (2008) Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags. J Proteome Res 7, 5270-5276   DOI   ScienceOn
55 Go YM, Roede JR, Walker DI et al (2013) Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems. Mol Cell Proteomics 12, 3285-3296   DOI   ScienceOn
56 Spector D, Labarre J and Toledano MB (2001) A genetic investigation of the essential role of glutathione: mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem 276, 7011-7016   DOI   ScienceOn
57 Floen MJ, Forred BJ, Bloom EJ and Vitiello PF (2014) Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia. Free Radic Biol Med 75, 167-177   DOI   ScienceOn
58 Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F and Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277, 29936-29944   DOI   ScienceOn
59 Aschner JL, Foster SL, Kaplowitz M, Zhang Y, Zeng H and Fike CD (2007) Heat shock protein 90 modulates endothelial nitric oxide synthase activity and vascular reactivity in the newborn piglet pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 292, L1515-1525   DOI   ScienceOn
60 Fukunaga Y, Liu H, Shimizu M, Komiya S, Kawasuji M and Nagafuchi A (2005) Defining the roles of beta-catenin and plakoglobin in cell-cell adhesion: isolation of beta-catenin/plakoglobin-deficient F9 cells. Cell Struct Funct 30, 25-34   DOI   ScienceOn
61 Neumann CA, Krause DS, Carman CV et al (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561-565   DOI   ScienceOn
62 Zhang B, Wang Y and Su Y (2009) Peroxiredoxins, a novel target in cancer radiotherapy. Cancer Lett 286, 154-160   DOI   ScienceOn
63 Aguilar-Melero P, Prieto-Álamo MJ, Jurado J, Holmgren A and Pueyo C (2013) Proteomics in HepG2 hepatocarcinoma cells with stably silenced expression of PRDX1. J Proteomics 79, 161-171   DOI   ScienceOn
64 Fuentes-Almagro CA, Prieto-Alamo MJ, Pueyo C and Jurado J (2012) Identification of proteins containing redox-sensitive thiols after PRDX1, PRDX3 and GCLC silencing and/or glucose oxidase treatment in Hepa 1-6 cells. J Proteomics 77, 262-279   DOI   ScienceOn
65 DeBerardinis RJ and Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313-324   DOI   ScienceOn
66 Park SH, Chung YM, Lee YS et al (2000) Antisense of human peroxiredoxin II enhances radiation-induced cell death. Clin Cancer Res 6, 4915-4920
67 Chung YM, Yoo YD, Park JK, Kim YT and Kim HJ (2001) Increased expression of peroxiredoxin II confers resistance to cisplatin. Anticancer Res 21, 1129-1133
68 Rocha S, Vitorino RM, Lemos-Amado FM et al (2008) Presence of cytosolic peroxiredoxin 2 in the erythrocyte membrane of patients with hereditary spherocytosis. Blood Cells Mol Dis 41, 5-9   DOI   ScienceOn