DOI QR코드

DOI QR Code

Cerebral Hemodynamics in Premature Infants

  • Rhee, Christopher J. (Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine) ;
  • Rios, Danielle R. (Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine) ;
  • Kaiser, Jeffrey R. (Departments of Pediatrics, Obstetrics and Gynecology*, Hershey Medical Center, Penn State College of Medicine) ;
  • Brady, Ken (Section of Neonatology, Departments of Pediatrics, Critical Care Medicine and Anesthesiology, Texas Children's Hospital, Baylor College of Medicine)
  • Received : 2017.12.16
  • Accepted : 2018.01.24
  • Published : 2018.02.28

Abstract

Extremely low birth weight infants remain at increased risk of intraventricular hemorrhage from the fragile vascular bed of the germinal matrix; the roles of hypotension (ischemia) and reperfusion (hyperemia) in the development of intraventricular hemorrhage are still debated. Cerebrovascular pressure autoregulation protects the brain by maintaining constant cerebral blood flow despite changes in blood pressure. The ontogeny of cerebrovascular pressure autoregulation has not been well established and uncertainty remains about the optimal arterial blood pressure required to support brain perfusion. Another important aspect of premature cerebral hemodynamics is the critical closing pressure--the arterial blood pressure at which cerebral blood flow ceases. Interestingly, in premature infants, the critical closing pressure approximates the mean arterial blood pressure. Often in this unique population, cerebral blood flow occurs only during systole when the diastolic arterial blood pressure is equal to the critical closing pressure. Moreover, the diastolic closing margin, a metric of cerebral perfusion that normalizes diastolic arterial blood pressure to the critical closing pressure, may be a better measure than arterial blood pressure for defining cerebral perfusion in premature infants. Elevated diastolic closing margin has been associated with intraventricular hemorrhage. This review summarizes the current state of understanding of cerebral hemodynamics in premature infants.

Keywords

References

  1. Hack M. Young adult outcomes of very-low-birth-weight children. Semin Fetal Neonatal Med 2006;11:127-37. https://doi.org/10.1016/j.siny.2005.11.007
  2. Volpe JJ. Intraventricular hemorrhage in the premature infant--current concepts. Part I. Ann Neurol 1989;25:3-11. https://doi.org/10.1002/ana.410250103
  3. Volpe JJ. Intraventricular hemorrhage in the premature infant--current concepts. Part II. Ann Neurol 1989;25:109-16. https://doi.org/10.1002/ana.410250202
  4. Osborn DA, Evans N, Kluckow M. Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch Dis Child Fetal Neonatal Ed 2004;89: F168-73. https://doi.org/10.1136/adc.2002.023796
  5. Watkins AM, West CR, Cooke RW. Blood pressure and cerebral haemorrhage and ischaemia in very low birthweight infants. Early Hum Dev 1989;19:103-10. https://doi.org/10.1016/0378-3782(89)90120-5
  6. Kluckow M, Evans N. Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed 2000;82:F182-7. https://doi.org/10.1136/fn.82.3.F182
  7. Kluckow M, Evans N. Low systemic blood flow in the preterm infant. Semin Neonatol 2001;6:75-84. https://doi.org/10.1053/siny.2000.0035
  8. Ment LR, Stewart WB, Duncan CC, Pitt BR, Rescigno A, Cole J. Beagle puppy model of perinatal cerebral infarction. J Neurosurg 1985;63:441-7. https://doi.org/10.3171/jns.1985.63.3.0441
  9. Ment LR, Stewart WB, Duncan CC, Pitt BR. Beagle puppy model of perinatal cerebral insults. J Neurosurg 1986;65:847-50. https://doi.org/10.3171/jns.1986.65.6.0847
  10. Soleymani S, Borzage M, Noori S, Seri I. Neonatal hemodynamics: monitoring, data acquisition and analysis. Expert Rev Med Devices 2012;9:501-11. https://doi.org/10.1586/erd.12.32
  11. Osborn DA, Evans N, Kluckow M. Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch Dis Child Fetal Neonatal Ed 2004;89:F168-F73. https://doi.org/10.1136/adc.2002.023796
  12. Laughon M, Bose C, Allred E, O'Shea TM, Marter LJV, Bednarek F, et al. Factors associated with treatment for hypotension in extremely low gestational age newborns during the first postnatal week. Pediatrics 2007;119:273-80. https://doi.org/10.1542/peds.2006-1138
  13. Al-Aweel I, Pursley D, Rubin L, Sharh B, Weisberger S, Richardson D. Variations in prevalence of hypotension, hypertension, and vasopressor use in NICUs. J Perinatol 2001;21:272-8. https://doi.org/10.1038/sj.jp.7210563
  14. Lou H, Skov H, Pedersen H. Low cerebral blood flow: a risk factor in the neonate. J Pediatr 1979;95:606-9. https://doi.org/10.1016/S0022-3476(79)80779-9
  15. Rhee CJ, Kaiser JR, Rios DR, Kibler KK, Easley RB, Andropoulos DB, et al. Elevated diastolic closing margin is associated with intraventricular hemorrhage in premature infants. J Pediatr 2016;174:52-6. https://doi.org/10.1016/j.jpeds.2016.03.066
  16. Szymonowicz W, Walker A, Yu V, Stewart M, Cannata J, Cussen L. Regional cerebral blood flow after hemorrhagic hypotension in the preterm, near-term, and newborn lamb. Pediatr Res 1990;28:361-6. https://doi.org/10.1203/00006450-199010000-00012
  17. Helou S, Koehler RC, Gleason CA, Jones MD, Jr., Traystman RJ. Cerebrovascular autoregulation during fetal development in sheep. Am J Physiol 1994;266:H1069-74. https://doi.org/10.1152/ajpcell.1994.266.4.C1069
  18. Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, et al. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 2009;40:1820-6. https://doi.org/10.1161/STROKEAHA.108.536094
  19. Kaiser JR, Gauss CH, Williams DK. Surfactant administration acutely affects cerebral and systemic hemodynamics and gas exchange in very-low-birth-weight infants. J Pediatr 2004;144:809-14.
  20. Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, et al. Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 2000;106:625-32. https://doi.org/10.1542/peds.106.4.625
  21. Gilmore MM, Stone BS, Shepard JA, Czosnyka M, Easley RB, Brady KM. Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant. J Perinatol 2011;31:722-9. https://doi.org/10.1038/jp.2011.17
  22. Tyszczuk L, Meek J, Elwell C, Wyatt JS. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics 1998;102:337-41. https://doi.org/10.1542/peds.102.2.337
  23. Soul JS, Hammer PE, Tsuji M, Saul JP, Bassan H, Limperopoulos C, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 2007;61:467-73. https://doi.org/10.1203/pdr.0b013e31803237f6
  24. O'Leary H, Gregas MC, Limperopoulos C, Zaretskaya I, Bassan H, Soul JS, et al. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics 2009;124:302-9. https://doi.org/10.1542/peds.2008-2004
  25. Kaiser JR, Gauss CH, Williams DK. The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants. Pediatr Res 2005;58:931-5. https://doi.org/10.1203/01.pdr.0000182180.80645.0c
  26. Kaiser J, Gauss C, Williams D. Tracheal suctioning is associated with prolonged disturbances of cerebral hemodynamics in very low birth weight infants. J Perinatol 2007;28:34-41.
  27. Kaiser J, Gauss C, Williams D. The effects of closed tracheal suctioning plus volume guarantee on cerebral hemodynamics. J Perinatol 2011;31:671-6. https://doi.org/10.1038/jp.2011.8
  28. Wong F, Leung T, Austin T, Wilkinson M, Meek J, Wyatt J, et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics 2008;121:e604-11. https://doi.org/10.1542/peds.2007-1487
  29. Riera J, Cabanas F, Serrano JJ, Madero R, Pellicer A. New developments in cerebral blood flow autoregulation analysis in preterm infants: a mechanistic approach. Pediatr Res 2016;79:460-5. https://doi.org/10.1038/pr.2015.231
  30. Rhee CJ, Fraser III CD, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, et al. The ontogeny of cerebrovascular pressure autoregulation in human premature infants. J Perinatol 2014;34:926-31. https://doi.org/10.1038/jp.2014.122
  31. Nichol J, Girling F, Jerrard W, Claxton E, Burton A. Fundamental instability of the small blood vessels and critical closing pressures in vascular beds. Am J Physiol 1951;164:330-44.
  32. Jagersberg M, Schaller C, Bostrom J, Schatlo B, Kotowski M, Thees C. Simultaneous bedside assessment of global cerebral blood flow and effective cerebral perfusion pressure in patients with intracranial hypertension. Neurocrit Care 2010;12:225-33. https://doi.org/10.1007/s12028-009-9300-2
  33. Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab 2013;33:235-43. https://doi.org/10.1038/jcbfm.2012.161
  34. Panerai R, Coughtrey H, Rennie J, Evans D. A model of the instantaneous pressure-velocity relationships of the neonatal cerebral circulation. Physiol Meas 1993;14:411-8. https://doi.org/10.1088/0967-3334/14/4/002
  35. Panerai R, Kelsall A, Rennie J, Evans D. Estimation of critical closing pressure in the cerebral circulation of newborns. Neuropediatrics 1995;26:168-73. https://doi.org/10.1055/s-2007-979748
  36. Rhee CJ, Fraser III CD, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, et al. Ontogeny of critical closing pressure. Pediatr Res 2015;78:71-5. https://doi.org/10.1038/pr.2015.67
  37. Nelson RJ, Czosnyka M, Pickard JD, Maksymowicz W, Perry S, Lovick AH. Experimental aspects of cerebrospinal hemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. Neurosurgery 1992;31:705-10.