• 제목/요약/키워드: Iron Nanoparticles

검색결과 197건 처리시간 0.02초

Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles

  • Gokila, V.;Perarasu, V.T.;Rufina, R. Delma Jones
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.71-76
    • /
    • 2021
  • Synthesis of nanoparticles using green technology using plants is gaining significant attention as it is an environmentally friendly substitute to conventional physical and chemical methods. The present study was focused on the chemical and green synthesis of Iron Oxide nanoparticles from ferric chloride. The green synthesis was achieved by utilizing the bio components of Hibiscus rosa-sinensis. The Fe3O4 nanoparticles with the size range of 87-400 nm were synthesized by wet chemical reduction technique which are unstable, prone to aggregation while in green synthesis the phytochemicals present in the leaf extract acts as the capping as well as the reducing agent thus the green synthesized iron (III) oxide nanoparticles were naturally stabilized, spherical shaped and are in the size range of 2-80 nm. The results of both the protocols are compared and presented briefly.

자성 산화철(iron oxide) 나노입자를 이용한 DNA 센서 개발 (Development of DNA Sensor Using Magnetic Iron Oxide Nanoparticle)

  • 남기창;송광섭
    • 전자공학회논문지SC
    • /
    • 제48권6호
    • /
    • pp.51-56
    • /
    • 2011
  • 자성 산화철 나노입자(iron oxide nanoparticle, ${\gamma}-Fe_2O_3$) 표면을 기능성 유기 분자를 이용하여 아민기($-NH_2$), 카르복실기(-COOH)로 표면 처리 하였으며, 이들 기능기로 표면 처리된 산화철 나노입자를 FT-IR을 이용하여 나노입자 표면을 분석하였다. 아민기, 카르복실기로 표면처리된 산화철 나노입자 표면에 특정 배열을 갖는 21-base pair 길이의 프로브 DNA를 고정하였고, 형광 라벨(Cy5)이 부착된 상보적, 비상보적 타게트 DNA를 이용하여 고정된 프로브 DNA와 hybridization을 진행하였다. 각각의 상보적, 비상보적 타게트 DNA와 hybridization 처리한 산화철 나노입자를 confocal microscopy를 이용하여 관찰하였으며, 그 결과 산화철 나노입자를 이용하여 특정 배열의 DNA검출에 성공하였다.

화학기상응축법으로 제조된 철 나노분말의 산화저항에 관한 연구 (A Study on Oxidation-Resistance of Iron Nanoparticles Synthesized by Chemical Vapor Condensation Process)

  • 이동원;유지훈;배정현;장태석;김병기
    • 한국분말재료학회지
    • /
    • 제12권3호
    • /
    • pp.225-230
    • /
    • 2005
  • In order to prevent the oxide formation on the surface of nano-size iron particles and thereby to improve the oxidation resistance, iron nanoparticles synthesized by a chemical vapor condensation method were directly soaked in hexadecanethiol solution to coat them with a polymer layer. Oxygen content in the polymer-coated iron nanoparticles was significantly lower than that in air-passivated particles possessing iron-core/oxide-shell structure. Accordingly, oxidation resistance of the polymer-coated particles at an elevated temperature below $130^{\circ}C$ in air was $10\~40$ times higher than that of the air- passivated particles.

Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process

  • Chaubey, Girija S.;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2279-2282
    • /
    • 2007
  • Highly crystalline, uniform Fe nanoparticles were successfully synthesized and encapsulated in zirconia shell using sol-gel process. Two different approaches have been employed for the coating of Fe nanoparticle with zirconia. The thickness of zirconia shell can be readily controlled by altering molar ratio of Fe nanoparticle core to zirconia precursor in the first case where as reaction time was found to be most effective parameter to controlled the shell thickness in the second method. The structure and magnetic properties of the ZrO2-coated Fe nanoparticles were studied. TEM and HRTEM images show a typical core/shell structure in which spherical α-iron crystal sized of ~25 nm is surrounded by amorphous ZrO2 coating layer. TGA study showed an evidence of weight loss of less than 2% over the temperature range of 50-500 °C. The nanoparticles are basically in ferromagnetic state and their magnetic properties depend strongly on annealing temperature. The thermal treatment carried out in as-prepared sample resulted in reduction of coercivity and an increase in saturation magnetization. X-ray diffraction experiments on the samples after annealing at 400-600 °C indicate that the size of the Fe@ZrO2 particles is increased slightly with increasing annealing temperature, indicating the ZrO2 coating layer is effective to interrupt growing of iron particle according to heat treatment.

저압 초음파 분무 공정을 이용한 γ-Fe2O3 나노입자의 합성 (Synthesis of γ-Fe2O3 Nanoparticles by Low-pressure Ultrasonic Spraying)

  • 이창우;김순길;좌용호;이재성
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.19-25
    • /
    • 2007
  • This study was focused on the optimization of low-pressure ultrasonic spraying process for synthesis of pure ${\gamma}-Fe_2O_3$ nanoparticles. As process variables, pressure in the reactor, precursor concentration, and reaction temperature were changed in order to control the chemical and microstructural properties of iron oxide nanoparticles including crystal phase, mean particle size and particle size distribution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies revealed that pure ${\gamma}-Fe_2O_3$ nanoparticles with narrow particle size distribution of 5-15 nm were successfully synthesized from iron pentacarbonyl ($Fe(CO)_{5}$) in hexane under 30 mbar with precursor concentrations of 0.1M and 0.2M, at temperatures over $800^{\circ}C$. Also magnetic properties, coercivity ($H_c$) and saturation magnetization ($M_s$) were reported in terms of the microstructure of particles based on the results from vibration sampling magnetometer (VSM).

화학적 기상 응축(CVC)법을 이용한 철-몰리브덴합금 나노 입자와 와이어의 제조 (Fabrication of Iron-Molybdenum Alloyed Nanoparticle and Nanowire using Chemical Vapor Condensation(CVC))

  • 하종근;조권구;김기원;류광선
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.223-229
    • /
    • 2010
  • Iron(Fe)-Molybdenum(Mo) alloyed nanoparticles and nanowires were produced by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl($Fe(CO)_5$) and Molybdenum hexacarbonyl($Mo(CO)_6$). The influence of CVC parameter on the formation of nanoparticle, nanowire and size control was studied. The size of Fe-Mo alloyed nanoparticles can be controlled by quantity of gas flow. Also, Fe-Mo alloyed nanowires were produced by control of the work chamber pressure. Moreover, we investigated close correlation of size and morphology of Fe-Mo nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. Obtained nanoparticles and nanowires were investigated by field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.

Fe(acac)3 전구체를 사용한 균일한 산화철 나노입자 제조 (Synthesis of Monodisperse Iron-oxide Nanoparticles from Fe(acac)3 Precursor)

  • 김동영
    • 한국자기학회지
    • /
    • 제24권1호
    • /
    • pp.18-21
    • /
    • 2014
  • 본 연구에서는 온도를 $T_a=273$, 300 및 $324^{\circ}C$로 설정한 고온에서 $Fe(acac)_3$ 전구체가 열분해 한 후 산화철 나노입자를 형성하는 과정을 분석하기 위하여 온도 조절 과정 동안 시간에 따라 순차적으로 추출한 반응 원액의 강자성 공명 신호를 측정하였다. 강자성 공명 신호를 두 번 적분한 마이크로파 흡수량의 증가 시간으로부터 나노입자의 성장 시간을 추정하였으며, 생성된 산화철 나노입자들의 TEM 사진으로부터 나노입자의 크기 및 표준편차를 구하였다. 이들 결과로부터 산화철 나노입자의 균일성과 성장율은 역비례 하였으며, 특히 $T_a=300^{\circ}C$ 온도 조건에서 산화철 나노 입자의 성장율이 가장 빨랐으며, 균일성이 가장 우수하였다. 따라서, 균일한 크기의 산화철 나노입자를 제조하기 위하여 급속 성장 조건이 필요함을 본 연구를 통하여 알 수 있었다.

Detection of Iron Nanoparticles using Nuclear Magnetic Resonance Relaxometry and Inverse Laplace Transform

  • Kim, Seong Min
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.345-351
    • /
    • 2014
  • Purpose: Rapid detection of bacteria is very important in agricultural and food industries to prevent many foodborne illnesses. The objective of this study was to develop a portable nuclear magnetic resonance (NMR)-based system to detect foodborne pathogens (E. coli). This study was focused on developing a method to detect low concentrations of magnetic nanoparticles using NMR techniques. Methods: NMR relaxometry was performed to examine the NMR properties of iron nanoparticle mixtures with different concentrations by using a 1 T permanent magnet magnetic resonance imaging system. Exponential curve fitting (ECF) and inverse Laplace transform (ILT) methods were used to estimate the NMR relaxation time constants, $T_1$ and $T_2$, of guar gum solutions with different iron nanoparticle concentrations (0, $10^{-3}$, $10^{-4}$, $10^{-5}$, $10^{-6}$, and $10^{-7}M$). Results: The ECF and ILT methods did not show much difference in these values. Analysis of the NMR relaxation data showed that the ILT method is comparable to the classical ECF method and is more sensitive to the presence of iron nanoparticles. This study also showed that the spin-spin relaxation time constants acquired by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence are more useful for determining the concentration of iron nanoparticle solutions comparwith the spin-lattice relaxation time constants acquired by an inversion recovery pulse sequence. Conclusions: We conclude that NMR relaxometry that utilizes CPMG pulse sequence and ILT analysis is more suitable for detecting foodborne pathogens bound to magnetic nanoparticles in agricultural and food products than using inversion recovery pulse sequence and ECF analysis.

Electron Spin Resonance (ESR) and Microwave Absorption Studies of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Hyperthermia Applications

  • Choi, Yong-Ho;Yi, Terry;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.577-583
    • /
    • 2011
  • Stabilized biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) were prepared by controlled coprecipitation method for hyperthermia application. ESR measurements determined that all of the interactions in the individual SPIONs (1 nm and 11 nm) were antiferromagnetic in nature because the ions contributed to the magnetization with a range of magnetic moments. In-situ monitoring of the temperature increment was performed, showing that the microwave absorption rate of the SPIONs was dispersed in an appropriate host media (polar or non-polar solvents) during microwave irradiation. Microwave absorption energy rates and heat loss of SPIONs in solvent were calculated by non-linear data fitting with an energy balance equation. The microwave absorption rates of SPIONs dispersed in solvent linearly increases when the concentration of SPIONs increases, implying that the microwave absorption rate can be tunable by changing the concentration of SPIONs.

An Environmentally-friendly Precursor, Ferrous Acetate, in preparation for Monodisperse Iron Oxide Nanoparticles

  • Suh, Yong-Jae;Kil, Dae-Sup;Chung, Kang-Sup;Lee, Hyo-Sook;Shao, Huiping
    • Journal of Magnetics
    • /
    • 제13권3호
    • /
    • pp.106-109
    • /
    • 2008
  • Almost monodisperse iron oxide nanoparticles with an average particle size ranging from 5 to 43 nm were fabricated using an environmentally friendly starting material, ferrous acetate. The smallest particles were formed in the presence of a reductant, 1,2-dodecanediol, while the particle size increased with increasing concentration of dispersing agents. The dispersants consisted of various combinations of oleic acid, oleylamine, trioctylphosphine, and polyvinylpyrrolidone. The threshold temperature to form crystalline particles was found to be $240^{\circ}C$. The 43 nm nanoparticles exhibited a room temperature saturation magnetization and coercivity of 57 emu/g and 47 Oe, respectively.