DOI QR코드

DOI QR Code

Fabrication of Iron-Molybdenum Alloyed Nanoparticle and Nanowire using Chemical Vapor Condensation(CVC)

화학적 기상 응축(CVC)법을 이용한 철-몰리브덴합금 나노 입자와 와이어의 제조

  • Ha, Jong-Keun (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Cho, Kwon-Koo (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Kim, Ki-Won (School of Materials Science and Engineering, i-cube Center & ERI, Gyeongsang National University) ;
  • Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
  • 하종근 (경상대학교 나노.신소재 공학부, i-큐브 센터) ;
  • 조권구 (경상대학교 나노.신소재 공학부, i-큐브 센터) ;
  • 김기원 (경상대학교 나노.신소재 공학부, i-큐브 센터) ;
  • 류광선 (울산대학교 화학과)
  • Received : 2010.05.06
  • Accepted : 2010.05.24
  • Published : 2010.06.28

Abstract

Iron(Fe)-Molybdenum(Mo) alloyed nanoparticles and nanowires were produced by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl($Fe(CO)_5$) and Molybdenum hexacarbonyl($Mo(CO)_6$). The influence of CVC parameter on the formation of nanoparticle, nanowire and size control was studied. The size of Fe-Mo alloyed nanoparticles can be controlled by quantity of gas flow. Also, Fe-Mo alloyed nanowires were produced by control of the work chamber pressure. Moreover, we investigated close correlation of size and morphology of Fe-Mo nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. Obtained nanoparticles and nanowires were investigated by field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.

Keywords

References

  1. G. F. Gaertner and H. Lydtin: Nanostruct. Mater., 4 (1994) 559. https://doi.org/10.1016/0965-9773(94)90064-7
  2. L. Savinia, E. Bonettia, L. Del Biancoa, L. Pasquinia,L. Signorinia, M. Coissonb and V. Selvagginic: J. Magn. Mater., 262 (2003) 56. https://doi.org/10.1016/S0304-8853(03)00018-0
  3. S. H. Huh, H. K. Kim, J .W. Park and G. H. Lee: Phys. Rev. B, 62 (2000) 2937. https://doi.org/10.1103/PhysRevB.62.2937
  4. G. Skandan, Y.-J Chen, N. Glumac, and B. H. Kear:Nanostruct. Mater., 11 (1999) 149. https://doi.org/10.1016/S0965-9773(99)00028-8
  5. L. Savini, E. Bonetti, L. Del Bianco, L. Pasquini, L.Signorini, M. Coisson and V. Selvaggini: J. Magn. Mater., 262 (2003) 56. https://doi.org/10.1016/S0304-8853(03)00018-0
  6. C. G. Granqvist and R. A. Buhrman: Solid State Communications.,18 (1976) 123. https://doi.org/10.1016/0038-1098(76)91415-0
  7. C. J. Choi, X. L. Dong and B. K. Kim: Scripta mater.,44 (2001) 2225. https://doi.org/10.1016/S1359-6462(01)00750-3
  8. G. H. Lee, S. H. Huh, J. W. Jeong and H.-C. Ri: J. Magn. Mater., 246 (2002) 404. https://doi.org/10.1016/S0304-8853(02)00113-0
  9. C. J. Choi, O. Tolochko and B. K. Kim: Materials Letters,56 (2002) 289. https://doi.org/10.1016/S0167-577X(02)00457-3
  10. X. L. Dong, C. J. Choi and B. K. Kim: Scripta Mater.,47 (2002) 857. https://doi.org/10.1016/S1359-6462(02)00304-4
  11. W. Chang, G. Skandan, H. Hahn, S. C. Danforth andB. K. Kear: Nanostruct. Mater., 4 (1994) 345. https://doi.org/10.1016/0965-9773(94)90144-9
  12. V. G. Syrkin and Poroshkovaya Metallurgiya: Poroshkovaya Metall- urgiya, 3 (1963) 75.
  13. Zhiquan Jiang, Weixin Huang, Jian Jiao, Hong Zhao,Dali Tan, Runsheng Zhai and Xinhe Bao: Applied Surface Sci., 229 (2004) 43. https://doi.org/10.1016/j.apsusc.2004.01.028
  14. Menachem Motiei, Jose Calderon Moreno and AharonGedanken: Chem. Phy. Lett., 357 (2002) 271.
  15. J-K. Ha, K.-K. Cho, K.-W. Kim, T.-H. Nam, H.-J. Ahnand G.-B. Cho: Mater. Sci. Forum, 534-536 (2007) 29. https://doi.org/10.4028/www.scientific.net/MSF.534-536.29