DOI QR코드

DOI QR Code

Synthesis of γ-Fe2O3 Nanoparticles by Low-pressure Ultrasonic Spraying

저압 초음파 분무 공정을 이용한 γ-Fe2O3 나노입자의 합성

  • Lee, Chang-Woo (Department of Metallurgy and Materials Science, Hanyong University) ;
  • Kim, Soon-Gil (Department of Metallurgy and Materials Science, Hanyong University) ;
  • Choa, Yong-Ho (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyong University)
  • 이창우 (한양대학교 금속재료공학과) ;
  • 김순길 (한양대학교 금속재료공학과) ;
  • 좌용호 (한양대학교 화학공학과) ;
  • 이재성 (한양대학교 금속재료공학과)
  • Published : 2007.02.28

Abstract

This study was focused on the optimization of low-pressure ultrasonic spraying process for synthesis of pure ${\gamma}-Fe_2O_3$ nanoparticles. As process variables, pressure in the reactor, precursor concentration, and reaction temperature were changed in order to control the chemical and microstructural properties of iron oxide nanoparticles including crystal phase, mean particle size and particle size distribution. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies revealed that pure ${\gamma}-Fe_2O_3$ nanoparticles with narrow particle size distribution of 5-15 nm were successfully synthesized from iron pentacarbonyl ($Fe(CO)_{5}$) in hexane under 30 mbar with precursor concentrations of 0.1M and 0.2M, at temperatures over $800^{\circ}C$. Also magnetic properties, coercivity ($H_c$) and saturation magnetization ($M_s$) were reported in terms of the microstructure of particles based on the results from vibration sampling magnetometer (VSM).

Keywords

References

  1. K. Wegner and S. E. Pratsinis: Powder Technol., 150 (2005) 117 https://doi.org/10.1016/j.powtec.2004.11.022
  2. H. Ago, S. Ohshima, K. Tsukuagoshi, M. Tsuji, and M. Yumura: Current Appl. Phys., 5 (2005) 128 https://doi.org/10.1016/j.cap.2004.06.004
  3. R. Bandyopadhyaya, A. A. Lall, and S. K. Friedlander: Powder Technol., 139 (2004) 193 https://doi.org/10.1016/j.powtec.2003.10.013
  4. Jong-Heun Lee, Hyoung-Jin Cho, and Soon-Ja Park: J. Korean Ceram. Soc., 28 (1991) 831
  5. H. B. Heo and K. C. Shin: J. Korea Assoc. Cryst. Growth, 4 (1994) 178
  6. Hee-Bong Kim, Jong-Heun Lee, and Soon-Ja Park: Korean J. Mater. Res., 5 (1995) 905
  7. International Chemical Safety Cards (ICSC) # 0168, http://www.cdc.gov/niosh/ipcsneng/neng0168.html
  8. Materials Safe Date Sheet (MSDS), Sigma-Aldrich (2006), http://www.sigmaaldrich.com/catalog/search/Product Detail/ALDRICH/481718
  9. C. W. Lee, D. Y. Maeng, J. H. Park, J. H. Yu, J. S. Lee, C. K. Rhee, and W. W. Kim: J. Korean Powder Metall. Inst., 10 (2003) 275 https://doi.org/10.4150/KPMI.2003.10.4.275
  10. W. C. Hinds: Aerosol Technology, John Wiley and Sons Inc., New York (1982) 254
  11. S. Sivaram: Chemical Vapor Deposition, Van Nostrand Reihold International, Thompson Publishing Inc., New York (1995) 14
  12. G. V. Samsonov: The Oxide Handbook, 2nd Ed., Plenum Data Company, 1982, New York, 150
  13. C. W. Lee, J. H. Yu, S. S. Im, S. H. Yun, J. S. Lee, and Y. H. Choa: Korean J. Mater. Res., 13 (2003) 328 https://doi.org/10.3740/MRSK.2003.13.5.328
  14. R. M. Cornell and U. Schwertmann: The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, VCH Publishers, New York (1982)
  15. B. D. Cullity: Introduction to Magnetic Materials, Addison-Wesley, Reading, 1972, MA, 201
  16. Z. X. Tang, C. M. Sorensen, K. J. Klabunde, and G. C. Hadjipanayis: J. Appl. Phys., 69 (1991) 5279 https://doi.org/10.1063/1.348048
  17. S. Kirusu, T. Ido and H. Yokoyama: IEEE Trans. Magn., 23 (1987) 3137 https://doi.org/10.1109/TMAG.1987.1065553
  18. L. Asenjo and J. Tejada: Appl. Phys. A, 74 (2002) 591 https://doi.org/10.1007/s003390100948