Browse > Article
http://dx.doi.org/10.4283/JKMS.2014.24.1.018

Synthesis of Monodisperse Iron-oxide Nanoparticles from Fe(acac)3 Precursor  

Kim, Dong Young (Department of Physics, Andong National University)
Abstract
The microwave absorption ($P_{tot}$), which is the double integration value of ferromagnetic resonance signal, propositional to the saturation magnetization, and the increase of the $P_{tot}$ measured during the thermal reaction time expect the growth process of the nanoparticles. Therefore, in this work, we measured the $P_{tot}$ in order to obtain the growth time of iron oxide nanoparticles after thermal decomposition of $Fe(acac)_3$ precursor at aging temperature $T_a=273$, 300 and $324^{\circ}C$, respectively. The best condition for monodisperse nanoparticles was obtained at $T_a=300^{\circ}C$, which condition showed the most rapid increase of $P_{tot}$ with thermal reaction time. Finally, the rapid growth rate was necessary condition for the synthesis of iron-oxide monodisperse nanoparticles.
Keywords
thermal decomposition; iron-oxide nanoparticles; ferromagnetic resonance; microwave absorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. T. Hai, H. T. Yang, H. Kura, D. Hasegawa, Y. Ogata, M. Takahashi, and T. Ogawa, J. Colloid and Interface Science 346, 37 (2010).   DOI
2 S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000).   DOI   ScienceOn
3 S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J. G. Park, and T. Hyeon, J. Am. Chem. Soc. 129, 12571 (2007).   DOI   ScienceOn
4 S. G. Kwon and T. Hyeon, Small 7, 2685 (2011).   DOI   ScienceOn
5 J. Lynch, J. Zhuang, T. Wang, D. LaMontagne, H. Wu, and Y. C. Cao, J. Am. Chem. Soc. 133, 12664 (2011).   DOI
6 L. M. Bronstein, J. E. Atkinson, A. G. Malyutin, F. Kidwai, B. D. Stein, D. G. Morgan, J. M. Perry, and J. A. Karty, Langmuir 27, 3044 (2011).   DOI
7 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008).   DOI   ScienceOn
8 J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, Nature Materials 3, 891 (2004).   DOI   ScienceOn
9 J. Park, E. Lee, N. M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, and T. Hyeon, Angew. Chem. Int. Ed. 44, 2872 (2005).   DOI   ScienceOn
10 H. Sun, B. Chen, X. Jiao, Z. Jiang, Z. Qin, and D. Chen, J. Phys. Chem. C 116, 5476 (2012).   DOI
11 D. Kim, N. Lee, M. Park, B. H. Kim, K. An, and T. Hyeon, J. Am. Chem. Soc. 131, 454 (2009).   DOI   ScienceOn