• Title/Summary/Keyword: Ionic Center

Search Result 345, Processing Time 0.027 seconds

Grafting and Characterization of Zwitter Ionic Poly(ethylene glycol) on Gold-Coated Nitinol Surface Chemisorbed with L-Cysteine (시스틴으로 화학흡착된 금 코팅 니티놀 표면에 앙쪽성 이온 폴리에틸렌글리콜의 그래프트 및 특성 평가)

  • Shin, Hong-Sub;Park, Kwi-Deok;Kim, Jae-Jin;Kim, Ji-Heung;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.84-90
    • /
    • 2009
  • Nitinol alloy (TiNi) has been widely used in vascular stents. To improve the blood compatibility of Nitinol alloy, its surface was chemically modified in this study. Nitinol was first coated with gold, then chemisorbed with L-cysteine (C/N), and followed by grafting of zwitter ionic poly(ethylene glycol) (PEG) (PEG-$N^+-SO_3{^-}$) to produce TiNi-C/N-PEG-N-S. The zwitter ionic PEG grafted on the Nitinol surface was identified by ATR-FTIR, ESCA and SEM. The hydrophilized surface was proven by the decrease of water contact angle. In addition, from the blood compatibility tests such as protein adsorption, platelet adhesion, and blood coagulation time, the surface-modified TiNi alloy exhibited a better blood compatibility as compared to the untreated Nitinol control. These results indicated a feasibility of synergistic effect of hydrophilic PEG and antithrombotic zwitter ion.

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.

Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces (액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용)

  • Liu, XiaoYun;Han, Hye Youn;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.506-512
    • /
    • 2017
  • The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A $5{\mu}M$ of TC in pH 4.0 buffer solution with a dynamic range from $5{\mu}M$ to $30{\mu}M$ TC concentration could be analyzed when using differential pulse stripping voltammetry.

A Study on Synthesis and Properties of Polyurethane Dispersion Adhesives

  • Park, Dong Kyu;Kim, Chung Gi;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.295-302
    • /
    • 2017
  • Polyurethane dispersion (PUD) polymers were synthesized by using polyether and polyester polyol. The effect of ionomeric centers, r(NCO / OH) values, chain extender process, and chain extender types on the adhesion properties was investigated. In the case of polyether-based PUD, the ionic center, r value, chain extension process and chain extender types were not adjusted even after adjustment. In the case of polyester-based PUD, when the ionic center content was more than 2.5%, the state of adhesive strength was $2.0kgf/cm^2$ or more. On the other hand, the initial adhesive strength was excellent at about $1kgf/cm^2$ when the ionic center content was over 3.5%. When the r value was 1.3 or more, it was found that the initial bonding strength and the state of bonding strength were excellent at about $1kgf/cm^2$ and $2.1kgf/cm^2$ or higher, respectively. An IR spectrum analysis of the synthesized PUD confirmed that PUD was composed of urethane based on the N-H characteristic peak at $3340cm^{-1}$ and the urethane characteristic peak at $1730cm^{-1}$. Moreover, the characteristic peaks of the isocyanate ($2260cm^{-1}$) used in the preparation of the prepolymer were not observed. As a result, the residual -NCO was not observed, and urethane was completely synthesized.

Ionic Liquid-based Electrolytes for Li Metal/Air Batteries: A Review of Materials and the New 'LABOHR' Flow Cell Concept

  • Bresser, Dominic;Paillard, Elie;Passerini, Stefano
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-44
    • /
    • 2014
  • The $Li-O_2$ battery has been attracting much attention recently, due to its very high theoretical capacity compared with Li-ion chemistries. Nevertheless, several studies within the last few years revealed that Li-ion derived electrolytes based on alkyl carbonate solvents, which have been commonly used in the last 27 years, are irreversibly consumed at the $O_2$ electrode. Accordingly, more stable electrolytes are required capable to operate with both the Li metal anode and the $O_2$ cathode. Thus, due to their favorable properties such as non volatility, chemical inertia, and favorable behavior toward the Li metal electrode, ionic liquid-based electrolytes have gathered increasing attention from the scientific community for its application in $Li-O_2$ batteries. However, the scale-up of Li-$O_2$ technology to real application requires solving the mass transport limitation, especially for supplying oxygen to the cathode. Hence, the 'LABOHR' project proposes the introduction of a flooded cathode configuration and the circulation of the electrolyte, which is then used as an oxygen carrier from an external $O_2$ harvesting device to the cathode for freeing the system from diffusion limitation.

Precious Metals Extraction Processing in Chloride Media by Using Ionic Liquids as Novel Extractant Systems

  • Kumar, Jyothi Rajesh;Choi, In-Hyeok;Lee, Jin-Young
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.503-509
    • /
    • 2017
  • The present experimental study proposed two ionic liquids (ILs) namely [Aliquat 336] [$HSO_4$] (prepared and characterized at our laboratory) and Cyphos 101 IL (supplied by Cytec Company) dissolved in two different diluents such as DCM (di-chloro-methane) and toluene applied for PMs extraction. The first IL [Aliquat 336] [$HSO_4$] prepared and confirmed the formation of final product by using FT-IR and TGA studies. The primary experiment in solvent extraction processing is kinetic effect; 0 to 30 time varied for PMs by using two ILs and confirmed the optimized extraction equilibrium time. This study was conducted for PMs (Pt, Rh and Cu) extraction and separation from each other by using proposed ILs. This is the primary study of the utilizing green solvents such as ILs as an extractant system for Pt, Rh and Cu extraction and possible separation.

Dynamic Mechanical and Morphological Studies of Styrene-co-Methacrylate and Sulfonated Polystyrene Ionomers Containing Aliphatic Dicarboxylate Salts

  • Luqman, Mohammad;Kim, Joon-Seop;Shin, Kwan-Woo
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.658-665
    • /
    • 2009
  • This study examined the effects of the sodium salts of aliphatic dicarboxylic acids (DCAs) on the dynamic mechanical properties and morphology of two sets of poly(styrene-co-sodium methacrylate) (MNa) and poly(styrene-co-sodium styrenesulfonate) (SNa) ionomers. When the DCA content was relatively low, the ionic moduli of the MNa and SNa ionomers increased but the matrix and cluster glass transition temperature ($T_g$) did not change significantly. The increasing ionic modulus was almost independent of the type of the ionic groups of the ionomer, and the chain length of DCAs. When a large amount of the sodium succinate (DCA4) was added to the MNa and SNa ionomers, the ionic moduli of the two ionomers increased strongly but the matrix and cluster $T_g's$ increased slightly and significantly, respectively. In the case of sodium hexadecanedioate (DCA 16), DCA 16 increased the ionic moduli of the two ionomers. The addition of DCA16 changed the matrix and cluster $T_g's$ of the MNa ionomer slightly, but decreased the cluster $T_g$ of the SNa ionomer significantly with no change in the matrix $T_g$. In addition, the DCA-containing ionomers showed an X-ray diffraction peak indicating the presence of ordered domains of DC As in the ionomers. Hence, DCA4 acts mainly as a reinforcing filler in MNa and SNa systems. In the case of DCA 16, it initially behaved like a filler but also functioned as a preferential plasticizer for the clusters at high content.

Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid (1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사)

  • Salman, Muhammad;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.603-606
    • /
    • 2020
  • A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl-3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.

Simultaneous Improvement of Dimensional Stability and Ionic Conductivity of QPAE/TiO2-x Composite Membranes According to TiO2 Content Control for Anion Exchange Membrane Fuel Cells (음이온교환막 연료전지를 위한 TiO2 함량 조절에 따른 QPAE/TiO2-x 복합막의 치수안정성 및 이온전도도 동시 개선 연구)

  • KIM, SANG HEE;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • A series of QPAE/TiO2-x (x = 1, 4, 7 and 10 wt%) organic/inorganic composite membranes were prepared as electrolyte membranes for alkaline anion exchange membrane fuel cells by controlling the content of inorganic filler with quaternized poly(arylene ether) (QPAE) random copolymer. Among the prepared QPAE/TiO2-x organic/inorganic composite membranes, the highest ionic conductivity was 26.6 mS cm-1 at 30℃ in QPAE/TiO2-7 composite membrane, which was improvement over the ionic conductivity value of 6.4 mS cm-1 (at 30℃) of the pristine QPAE membrane. Furthermore, the water uptake, swelling ratio, ionic exchange capacity, and thermal property of QPAE/TiO2-x composite membranes were improved compared to the pristine QPAE membrane. The results of these studies suggest that the fabricated QPAE/TiO2-x composite membranes have good prospects for alkaline anion exchange membrane fuel cell applications.