Browse > Article
http://dx.doi.org/10.14478/ace.2020.1076

Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid  

Salman, Muhammad (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 603-606 More about this Journal
Abstract
A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl-3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.
Keywords
Alkaline ionic liquid electrolytes; Protic; 1-Benzyl-3-butylimidazolium hydroxide; Energy applications; Potential window;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. Weingarth, I. Czekaj, Z. Fei, A. F. Schmitz, P. J. Dyson, A. Wokaun, and R. Kotz, Electrochemical stability of imidazolium based Ionic liquids containing cyano groups in the anion a cyclic voltammetry, XPS and DFT study, J. Electrochem. Soc., 7, H611-H615 (2012).
2 F. Bidault, D. J. L. Brett, P. H. Middleton, and N. P. Brandon, Review of gas diffusion cathodes for alkaline fuel cells, J. Power Sources, 187, 39-48 (2009).   DOI
3 C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, and E. J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids?, J. Am. Chem. Soc., 126, 5300-5308 (2004).   DOI
4 E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis Jr, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc., 124, 926-927 (2002).   DOI
5 I. J. Kim, K. S. Kim, and J. H. Lee, Ionic liquid crystal electrolytes based on ether functionalized ionic liquid for lithium batteries, Appl. Chem. Eng., 31, 305-309 (2020).   DOI
6 Q. Li, Q. Li, G. Li, W. Zhao, X. Zhao, and T. Mu, The electrochemical stability of ionic liquids and deep eutectic solvents, Sci. China Chem., 59, 571-577 (2016).   DOI
7 H. Lee, J. S. Lee, and H. S. Kim, Applications of ionic liquids: The state of art, Appl. Chem. Eng., 21, 129-136 (2010).
8 C. Chen, A functionalised ionic liquid: 1-(3-chloro-2-hydroxypropyl)-3-methyl imidazolium chloride, Phys. Chem. Liq., 48, 298-306 (2010).   DOI
9 M. Galinski, A. Lewandowski, and I. Stepniak, Ionic liquids as electrolytes, Electrochim. Acta, 51,5 567-5580 (2006).   DOI
10 C. S. Kim, and K.S.Yoo, Influence of the cation parts of imidazolium hexafluorophosphate on synthesis of Pd/C particles as a HFP hydrogenation catalyst, Appl. Chem. Eng., 25, 249-253 (2014).   DOI
11 H. Nakagawa, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, and K. Tatsumi, Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells, J. Power Sources, 174, 1021-1026 (2007).   DOI
12 C. S. Kim, B. S. Ahn, H. Tae, S. H. Jeon, and K. S. Yoo, Efffect of the cation part of imidazolium ionic liquids on the synthesis of palladium particle, Appl. Chem. Eng., 23, 510-513 (2012).
13 C. Wang, H.Luo, X. Luo, H. Li, and S. Dai, Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems, Green Chem., 12, 2019-2023 (2010).   DOI
14 S. Han, M. Luo, X. Zhou, Z. He, and L. Xiong, Synthesis of dipentyl carbonate by transesterification using basic ionic liquid [bmIm]OH catalyst, Ind. Eng. Chem. Res., 51, 5433-5437 (2012).   DOI
15 H. L. Ngo, K. Le Compte, L. Hargens, and A. B. McEwen, Thermal properties of imidazolium ionic liquids, Thermochim. Acta, 357, 97-102 (2000).   DOI
16 J. R. Jaganathan, M. Sivapragasm, and C. D. Wilfred, Thermal characteristics of 1-Butyl-3-methylimimidazolium based oxidant lonic liquids, J. Chem. Eng. Process Technol., 07, 1-6 (2016).
17 Z. Tshemese, S. C. Masikana, S. Mlowe, and N. Revaprasadu. In Recent Advances in Ionic Liquids, 71-88 (2018).
18 Y. C. Wu, W. F. Koch, and K. W. Pratt, Proposed new electrolytic conductivity primary standards for KCl solutions, J. Res. Natl. Inst. Stand. Technol., 96, 191-201 (1991).   DOI
19 J. Kestin, I. R. Shankland, and R. Paul, The viscosity of aqueous KCI solutions in the temperature range 25-200 ℃ and the pressure range 0.1-30 MPa, Int. J. Thermophys., 2, 301-314 (1981).   DOI
20 L. W. Jing, H. B. Xing, Z. Z. Fu, T. R. Ting, and Z. J. Ling, Measurement and correlation of the ionic conductivity of ionic liquid-molecular solvent solutions, Chin. J. Chem., 25, 1349-1356 (2007).   DOI