Browse > Article
http://dx.doi.org/10.14478/ace.2017.1052

Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces  

Liu, XiaoYun (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Han, Hye Youn (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Goh, Eunseo (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.5, 2017 , pp. 506-512 More about this Journal
Abstract
The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A $5{\mu}M$ of TC in pH 4.0 buffer solution with a dynamic range from $5{\mu}M$ to $30{\mu}M$ TC concentration could be analyzed when using differential pulse stripping voltammetry.
Keywords
tetracycline; ITIES; ionic partition diagram; lipophilicity; voltammetric ion sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Deryabina, S. H. Hansen, and H. Jensen, Molecular interactions in lipophilic environments studied by electrochemistry at interfaces between immiscible electrolyte solutions, Anal. Chem., 80, 203-208 (2008).   DOI
2 H. R. Kim, C. M. Pereira, H. Y. Han, and H. J. Lee, Voltammetric studies of topotecan transfer across liquid/liquid interfaces and sensing applications, Anal. Chem., 87, 5356-5362 (2015).   DOI
3 L. J. Leeson, J. E. Krueger, and R. A. Nash, Concerning the structural assignment of the second and third acidity constants of the tetracycline antibiotics, Tetrahedron Lett., 18, 1155-1160 (1963).
4 N. E. Rigler, S. P. Bag, D. E. Leyden, J. L. Sudmeier, and C. N. Reilley, Determination of a Protonation Scheme of Tetracycline Using Nuclear Magnetic Resonance, Anal. Chem., 37, 872-875 (1965).   DOI
5 J. L. Colaizzi and P. R. Klink, pH-Partition behavior of tetracyclines, J. Pharm. Sci., 58, 1184-1189 (1969).   DOI
6 A. Molina, C. Serna, J. A. Ortuno, J. Gonzalez, E. Torralba, and A. Gil, Differential pulse voltammetry for ion transfer at liquid membranes with two polarized interfaces, Anal. Chem., 81, 4220-4225 (2009).   DOI
7 J. A. Ortuo, C. Serna, A. Molina, and A. Gil, Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors, Anal. Chem., 78, 8129-8133 (2006).   DOI
8 S. Ulmeanu, H. J. Lee, D. J. Fermin, H. H. Girault, and Y. Shao, Voltammetry at a liquid liquid interface supported on a metallic electrode, Electrochem. Commun., 3, 219-223 (2001).   DOI
9 V. Gobry, S. Ulmeanu, F. Reymond, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Generalization of ionic partition diagrams to lipophilic compounds and to biphasic systems with variable phase volume ratios, J. Am. Chem. Soc., 123, 10684-10690 (2001).   DOI
10 J. A. Ribeiro, F. Silva, and C. M. Pereira, Electrochemical study of the anticancer drug daunorubicin at a water/oil interface: drug lipophilicity and quantification, Anal. Chem., 85, 1582-1590 (2013).   DOI
11 H.-T. Lam, C. M. Pereira, C. Roussel, P.-A. Carrupt, and H. H. Girault, Immobilized pH gradient gel cell to study the ph dependence of drug lipophilicity, Anal. Chem., 78, 1503-1508 (2006).   DOI
12 P. Peljo and H. H. Girault, Liquid/liquid interfaces, electrochemistry at, Encyclopedia of Analytical Chemistry, pp. 1-11, John Wiley & Sons (2012).
13 M. A.-J. Mohammed-Ali, Stabiblity Study of tetracycline drug in acidic and alkaline solutions by colorimetric method, J. Chem. Pharm. Res., 4, 1319-1326 (2012).
14 R. Gulaboski, M. N. D. S. Cordeiro, N. Milhazes, J. Garrido, F. Borges, M. Jorge, C. M. Pereira, I. Bogeski, A. H. Morales, B. Naumoski, and F. Silva, Evaluation of the lipophilic properties of opioids, amphetamine-like drugs, and metabolites through electrochemical studies at the interface between two immiscible solutions, Anal. Biochem., 361, 236-243 (2007).   DOI
15 S. M. Ulmeanu, H. Jensen, G. Bouchard, P.-A. Carrupt, and H. H. Girault, Water-oil partition profiling of ionized drug molecules using cyclic voltammetry and a 96-well microfilter plate system, Pharm. Res., 20, 1317-1322 (2003).   DOI
16 J. Pang, C. Han, Y. Chao, L. Jing, H. Ji, W. Zhu, Y. Chang, and H. Li, Partitioning behavior of tetracycline in hydrophobic ionic liquids two-phase systems, Sep. Sci. Technol., 50, 1993-1998 (2015).
17 D. W. M. Arrigan, Bioanalytical detection based on electrochemistry at interfaces between immiscible liquids, Anal. Lett., 41, 3233-3252 (2008).   DOI
18 R. A. Fernandez and S. A. Dassie, Transfer of tetracyclines across the $H_2O$1,2-dichloroethane interface: Analysis of degraded products in strong acid and alkaline solutions, J. Electroanal. Chem., 585, 240-249 (2005).   DOI
19 F. Reymond, P.-A. Carrupt, B. Testa, and H. H. Girault, Charge and delocalisation effects on the lipophilicity of protonable drugs, Chem. Eur. J., 5, 39-47 (1999).   DOI
20 F. Reymond, V. Chopineaux-Courtois, G. Steyaert, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Ionic partition diagrams of ionisable drug: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation, J. Electroanal. Chem., 462, 235-250 (1999).   DOI
21 J. Koryta, Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions-II. Progress since 1978*, Electrochim. Acta, 29, 445-452 (1984).   DOI
22 I. Hatay, B. Su, F. Li, M. A. Mendez, T. Khoury, C. P. Gros, J.-M. Barbe, M. Ersoz, Z. Samec, and H. H. Girault, Proton-coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine, J. Am. Chem. Soc., 131, 13453-13459 (2009).   DOI
23 Y. N. Kozlov and J. Koryta, Determination of tetracycline antibiotics by voltammetry at the interface of two immiscible electrolyte solutions, Anal. Lett., 16, 255-263 (1983).   DOI
24 H. H. Youn, Investigation on antibiotic transfer process across an interface between two immiscible electrolyte solution, MS Thesis, Department of Chemistry, Kyungpook National University, Daegu, Republic of Korea (2016).
25 M. M. Hossain, H. H. Girault, and H. J. Lee, Voltammetric Studies of anion transfer reactions across a microhole array-water/PVC-NPOE gel interface, Bull. Korean Chem. Soc., 33, 1734-1740 (2012).   DOI
26 S. N. Faisal, C. M. Pereira, S. Rho, and H. J. Lee, Amperometric proton selective sensors utilizing ion transfer reactions across a microhole liquid/gel interface, Phys. Chem. Chem. Phys., 12, 15184-15189 (2010).   DOI
27 M. Tumini, O. G. Nagel, P. Molina, and R. L. Althaus, Novel bioassay using Bacillus megaterium to detect tetracycline in milk, Rev. Argent. Microbiol., 48, 143-146 (2016).
28 X.-Q. Wei, Z.-F. Liu, and S.-P. Liu, Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue, Anal. Biochem., 346, 330-332 (2005).   DOI
29 H. Wang, H. Zhao, X. Quan, and S. Chen, Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode, Electroanalysis, 23, 1863-1869 (2011).   DOI
30 M. A. Ghandour and A. M. M. Ali, Adsorptive stripping voltammetric determination of tetracycline and oxytetracycline, Anal. Lett., 24, 2171-2186 (1991).   DOI
31 M. E. Caplis, H. S. Ragheb, and E. D. Schall, Determination of tetracycline antibiotics by alternating-current polarography, J. Pharm. Sci., 54, 694-698 (1965).   DOI
32 M. Velicky, A. N. J. Rodgers, R. A. W. Dryfe, and K. Tam, Use of voltammetry for in vitro equilibrium and transport studies of ionisable drugs, ADMET DMPK, 2, 143-456 (2014).
33 G. Bouchard, P.-A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Lipophilicity and solvation of anionic drugs, Chem. Eur. J., 8, 3478-3484 (2002).   DOI
34 R. Gulaboski, F. Borges, C. M. Pereira, M. N. D. S. Cordeiro, J. Garrido, and A. F. Silva, Voltammetric insights in the transfer of ionizable drugs across biomimetic membranes - Recent achievements, Comb. Chem. High Throughput Screen., 10, 514-526 (2007).   DOI
35 G. Greenstein, Clinical significance of bacterial resistance to tetracyclines in the treatment of periodontal diseases, J. Periodontol., 66, 925-931 (1995).   DOI
36 R. Daghrir and P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11, 209-227 (2013).   DOI
37 H. Oka, Y. Ito, and H. Matsumoto, Chromatographic analysis of tetracycline antibiotics in foods, J. Chromatogr. A, 882, 109-133 (2000).   DOI
38 H. Ji and E. Wang, Flow injection amperometric detection based on ion transfer across a water - Solidified nitrobenzene interface for the determination of tetracycline and terramycin, Analyst, 113, 1541-1543 (1988).   DOI