Browse > Article

Grafting and Characterization of Zwitter Ionic Poly(ethylene glycol) on Gold-Coated Nitinol Surface Chemisorbed with L-Cysteine  

Shin, Hong-Sub (Biomaterials Research Center, Korea Institute of Science and Technology)
Park, Kwi-Deok (Biomaterials Research Center, Korea Institute of Science and Technology)
Kim, Jae-Jin (Biomaterials Research Center, Korea Institute of Science and Technology)
Kim, Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University)
Han, Dong-Keun (Biomaterials Research Center, Korea Institute of Science and Technology)
Publication Information
Polymer(Korea) / v.33, no.1, 2009 , pp. 84-90 More about this Journal
Abstract
Nitinol alloy (TiNi) has been widely used in vascular stents. To improve the blood compatibility of Nitinol alloy, its surface was chemically modified in this study. Nitinol was first coated with gold, then chemisorbed with L-cysteine (C/N), and followed by grafting of zwitter ionic poly(ethylene glycol) (PEG) (PEG-$N^+-SO_3{^-}$) to produce TiNi-C/N-PEG-N-S. The zwitter ionic PEG grafted on the Nitinol surface was identified by ATR-FTIR, ESCA and SEM. The hydrophilized surface was proven by the decrease of water contact angle. In addition, from the blood compatibility tests such as protein adsorption, platelet adhesion, and blood coagulation time, the surface-modified TiNi alloy exhibited a better blood compatibility as compared to the untreated Nitinol control. These results indicated a feasibility of synergistic effect of hydrophilic PEG and antithrombotic zwitter ion.
Keywords
vascular stent; nitinol; chemisorption; zwitter ionic PEG; blood compatibility;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 D. K. Han, K. D. Park, K.-D. Ahn, S. Y. Jeong, and Y. H. Kim, J. Biomed. Mater. Res.: Appl. Biomater., 23(A1), 87 (1989)
2 A. Ihs and B. Liedberg, J. Colloid Interf. Sci., 144, 1 (1991)   DOI   ScienceOn
3 K. Holmberg, K. Bergstrom, C. Brink, E. Osterberg, F. Tiberg, and J. M. Harris, J. Adhes. Sci. Tech., 7, 503 (1993)   DOI   ScienceOn
4 J. Liu, T. Xu, M. Gong, F. Yu, and Y. Fu, J. Membr. Sci., 283, 190 (2006)   DOI   ScienceOn
5 F. Lim, X-H. Yu, and S. L. Cooper, Biomaterials, 14, 537 (1993)   DOI   ScienceOn
6 D. K. Han, S. Y. Jeong, Y. H. Kim, B. G. Min, and H. I. Cho, J. Biomed. Mater. Res., 25, 561 (1991)   DOI   PUBMED
7 J. H. Lee, H. B. Lee, and J. D. Andrade, Prog. Polym. Sci., 20, 1043 (1995)   DOI   ScienceOn
8 F. Zhang, E. T. Kang, K. G. Neoh, P. Wang, and K. L. Tan, Biomaterials, 22, 1541 (2001)   DOI   ScienceOn
9 T. B. McPherson, H. S. Shim, and K. Park, J. Biomed. Mater. Res. Appl. Biomater., 38, 553 (1997)
10 I. K. Jung, H. K. Park, C. S. Lim, K. S. Lee, and K. D. Park, Biomater. Res., 7, 59 (2003)
11 Y. X. Qui, D. Klee, W. Pluster, B. Severich, and H. Hocker, J. Appl. Polym. Sci., 61, 2373 (1996)   DOI   ScienceOn
12 W. Tsai, M. Grunkemeier, and A. Horbett, J. Biomed. Mater. Res., 44, 130 (1999)   DOI   ScienceOn
13 P. Claesson, Colloids Surf. A, 77, 109 (1993)   DOI   ScienceOn
14 A. L. Lewis, L. A. Tolhurst, and P. W. Stratford, Biomaterials, 23, 1967 (2002)   DOI   ScienceOn
15 Y. H. Kim, D. K. Han, K. D. Park, and S. H Kim, Biomaterials, 24, 2213 (2003)   DOI   ScienceOn
16 T. Duerig, A. Pelton, and D. Stockel, Mater. Sci. Eng. A, 149, 273 (1999)
17 J. C. Wataha, N. L. O'Dell, B. B. Singh, M. Ghazi, G. M. Whitford, and P. E. Lockwood, J. Biomed. Mater. Res., 537, 58 (2001)
18 J. Yuan, C. Mao, J. Zhou, J. Shen, S. C. Lin, W. Zhu, and J. L. Fang, Polym. Int., 52, 1869 (2003)   DOI   ScienceOn
19 M. Wirde and U. Gelius, Langmuir, 15, 6370 (1999)   DOI   ScienceOn
20 Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noshiki, Trans. Am. Soc. Artif. Intern. Org., 28, 459 (1982)
21 D. K. Han, K. D. Park, and Y. H. Kim, J. Biomater. Sci. Polym. Ed., 9, 163 (1998)   DOI   ScienceOn
22 W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, J. Biomed. Mater. Res., 25, 1547 (1991)   DOI   PUBMED
23 Y. Tamada, E. A. Kulik, and Y. Ikada, Biomaterials, 16, 259 (1995)   DOI   ScienceOn
24 C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, and Z. Yang, J. Solid State Chem., 177, 4394 (2004)   DOI   ScienceOn
25 K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi, J. Biomed. Mater. Res., 39, 323 (1998)   DOI   ScienceOn
26 J. H. Kim, J. S. Son, K. Park, J.-M. Kim, J.-J. Kim, K.-D. Ahn, and D. K. Han, Key Eng. Mater., 342, 805 (2007)   DOI
27 L. E. Medawar, P. Rocher, J. C. Hornez, M. Traisnel, J. Breme, and H. F. Hildebrand, Biomol. Eng., 153, 19 (2002)
28 C. D. Bain and G. M. Whitesides, Science, 240, 62 (1988)   DOI   PUBMED   ScienceOn
29 C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc., 111, 7164 (1989)   DOI
30 C. C. Shin and C. M. Shin, Appl. Surf. Sci., 219, 347 (2003)   DOI   ScienceOn
31 S. Windecker, I. Mayer, G. D. Pasquale, W. Maier, O. Dirsch, P. D Groot, Y. P. Wu, G. Noll, B. Leskosek, B. Meier, and O. M. Hess, Circulation, 104, 928 (2001)   DOI   ScienceOn
32 D. K. Han, N. Y. Lee, K. D. Park, Y. H. Kim, H. I. Cho, and B. G. Min, Biomaterials, 16, 467 (1995)   DOI   ScienceOn