• 제목/요약/키워드: Ion Probe

Search Result 283, Processing Time 0.032 seconds

Effect of Au-ionic Doping Treatment on SWNT Flexible Transparent Conducting Films

  • Min, Hyeong-Seop;Jeong, Myeong-Seon;Choe, Won-Guk;Kim, Sang-Sik;Lee, Jeon-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.111.1-111.1
    • /
    • 2012
  • Interest in flexible transparent conducting films (TCFs) has been growing recently mainly due to the demand for electrodes incorporated in flexible or wearable displays in the future. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effect of Au-ion treatment on the electronic structure change of SWNT films was investigated by Raman and XPS.

  • PDF

Study on the formation of Ta-silicides and the behavior of dopants implanted in the poly-Si substrates (Dopant가 주입된 poly-Si 기판에서 Ta-silicides의 형성 및 dopant 의 거동에 관한 연구)

  • Choi, Jin-Seok;Cho, Hyun-Choon;Hwang, Yu-Sang;Ko, Chul-Gi;Paek, Su-Hyon
    • Korean Journal of Materials Research
    • /
    • v.1 no.2
    • /
    • pp.99-104
    • /
    • 1991
  • Trantalum thin films have been prepared by DC sputtering onto As, P, and $BF_2$-implanted ($5{\times}10^15cm^-2$) poly-silicon. The heat treatments by rapid thermal annealing(RTA) have been applied to these samples for the formation of silicides. We have studied the application possibility of Ta-silicide as gate electrode and bit line. The silicide formation and the dopant diffusion after the heat treatment were investigated by various methods, such as four-point probe, X-ray, SEM cross sectional views, ${\alpha}$-step, and SIMS, The tantalum disilicide($TaSi_2$) are formed in the temperature above $800^{\circ}C$, and grown in colummar structure. $TaSi_2$ has a good surface roughness, having range from $80{\AA}\;to\;120{\AA}$, and implanted dopants are incoporated into the $TaSi_2$ layer during the RTA temperature.

  • PDF

Cadmium Inhibition of Renal Endosomal Acidification

  • Kim, Moo-Seong;Kim, Kyoung-Ryong;Ahn, Do-Whan;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • Chronic exposure to cadmium (Cd) results in an inhibition of protein endocytosis in the renal proximal tubule, leading to proteinuria. In order to gain insight into the mechanism by which Cd impairs the protein endocytosis, we investigated the effect of Cd on the acidification of renal cortical endocytotic vesicles (endosomes). The endosomal acidification was assessed by measuring the pH gradient-dependent fluorescence change, using acridine orange or FITC-dextran as a probe. In renal endosomes isolated from Cd-intoxicated rats, the $V_{max}$ of ATP-driven fluorescence quenching ($H^+-ATPase$ dependent intravesicular acidification) was significantly attenuated with no substantial changes in the apparent $K_m,$ indicating that the capacity of acidification was reduced. When endosomes from normal animals were directly exposed to free Cd in vitro, the $V_{max}$ was slightly reduced, whereas the $K_m$ was markedly increased, implying that the biochemical property of the $H^+-ATPase$ was altered by Cd. In endosomes exposed to free Cd in vitro, the rate of dissipation of the transmembrane pH gradient after $H^+-ATPase$ inhibition appeared to be significantly faster compared to that in normal endosomes, indicating that the $H^+-conductance$ of the membrane was increased by Cd. These results suggest that in long-term Cd-exposed animals, free Cd ions liberated in the proximal tubular cytoplasm by lysosomal degradation of cadmium-metallothionein complex (CdMT) may impair endosomal acidification 1) by reducing the $H^+-ATPase$ density in the endosomal membrane, 2) by suppressing the intrinsic $H^+-ATPase$ activity, and 3) possibly by increasing the membrane conductance to $H^+$ ion. Such effects of Cd could be responsible for the alterations of proximal tubular endocytotic activities, protein reabsorption and various transporter distributions observed in Cd-exposed cells and animals.

  • PDF

Measurement of Grating Pitch Standards using Optical Diffractometry and Uncertainty Analysis (광 회절계를 이용한 격자 피치 표준 시편의 측정 및 불확도 해석)

  • Kim Jong-Ahn;Kim Jae-Wan;Park Byong-Chon;Kang Chu-Shik;Eom Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.72-79
    • /
    • 2006
  • We measured grating pitch standards using optical diffractometry and analyzed measurement uncertainty. Grating pitch standards have been used widely as a magnification standard for a scanning electron microscope (SEM) and a scanning probe microscope (SPM). Thus, to establish the meter-traceability in nano-metrology using SPM and SEM, it is important to certify grating pitch standards accurately. The optical diffractometer consists of two laser sources, argon ion laser (488 nm) and He-Cd laser (325 nm), optics to make an incident beam, a precision rotary table and a quadrant photo-diode to detect the position of diffraction beam. The precision rotary table incorporates a calibrated angle encoder, enabling the precise and accurate measurement of diffraction angle. Applying the measured diffraction angle to the grating equation, the mean pitch of grating specimen can be obtained very accurately. The pitch and orthogonality of two-dimensional grating pitch standards were measured, and the measurement uncertainty was analyzed according to the Guide to the Expression of Uncertainty in Measurement. The expanded uncertainties (k = 2) in pitch measurement were less than 0.015 nm and 0.03 nm for the specimen with the nominal pitch of 300 nm and 1000 nm. In the case of orthogonality measurement, the expanded uncertainties were less than $0.006^{\circ}$. In the pitch measurement, the main uncertainty source was the variation of measured pitch values according to the diffraction order. The measurement results show that the optical diffractometry can be used as an effective calibration tool for grating pitch standards.

The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel (알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향)

  • Kim, Nam-Kyu;Kim, Byung-Chul;Jung, Byung-Hoon;Song, Sang-Woo;Nakata, K.;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

Nanofiber Membrane based Colorimetric Sensor for Mercury (II) Detection: A Review (나노 섬유 멤브레인을 기반으로 한 수은(II) 색변화 검출 센서에 대한 총설)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.241-252
    • /
    • 2021
  • Rapid industrialization with growing population leads to environmental water pollution. Demand in generation of clean water from waste water is ever increasing by scarcity of rain water due to change in weather pattern. Colorimetric detection of heavy metal present in clean water is very simple and effective technique. In this review membrane based colorimetric detection of mercury (II) ions are discussed in details. Membrane such as cellulose, polycaprolactone, chitosan, polysulfone etc., are used as support for metal ion detection. Nanofiber based materials have wide range of applications in energy, environment and biomedical research. Membranes made up of nanofiber consist up plenty of functional groups available in the polymer along with large surface area and high porosity. As a result, it is easy for surface modification and grafting of ligand on the fiber surface enhanced nanoparticles attachment.

Selective tyrosine conjugation with a newly synthesized PCB -TE2A-luminol bifunctional chelator

  • Subramani Rajkumar;Hyun Park;Abhinav Bhise;Seong Hwan Cho;Jung Young Kim;Kyo Chul Lee;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.85-91
    • /
    • 2021
  • Selective amino acid conjugation of bulky antibodies is a valuable asset for real-time diagnosis and therapy. However, selective conjugation incorporating a chelate-bearing radioactive atom into an antibody without affecting its immunoreactivity is a challenging task. A bifunctional chelator (BFC), a selective amino acid-targeting probe, and a linker have been developed to overcome this problem. Here, we report the synthesis of a novel propylene cross-bridged chelator (PCB)-1,8-N,N'-bis-(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane (TE2A)-luminol BFC via a click reaction and radiolabel it with a 64Cu ion for tyrosine-selective conjugation of trastuzumab. In the initial optimization study, we tried different oxidative addition conditions such as electro-oxidation, hemin, horseradish peroxidase, iodogen tube, chloramine-T, and iodo beads. In this study, up to 82% of 64Cu-PCB-TE2A-luminol was conjugated with the antibody in an iodo bead-catalyzed oxidative addition reaction with an isolated yield of 24.4%.

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

The Rietveld Structure Refinement of Natural Phlogopite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 금운모 결정에 대한 리트벨트 구조분석)

  • 이철규;송윤구;전철민;김신애;성기훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • The Rietveld structure refinement for the natural trioctahedral mica, phlogopite-1M (Parker Mine, Quebec, Canada) has been done by high resolution neutron powder diffraction at $25^{\circ}C$ and -263$^{\circ}C$. The structural formula of phlogopite determined by electron probe microanalysis is $K_2$(M $g_{4.46}$F $e_{0.83}$A $l_{0.34}$ $Ti_{0.22}$)(S $i_{5.51}$A $l_{2.49}$) $O_{20}$(O $H_{3.59}$ $F_{0.41}$). Cell parameters are a=5.30∼5.31 $\AA$, b=9.18∼9.20 $\AA$, c=10.18∼10.21 $\AA$, $\beta$=100.06∼100.08$^{\circ}$. Refinements converged to R values in the range of $R_{p}$=2.35%, $R_{wp}$=3.01%, respectively. In this study, the OH bond length is calculated to 0.93 $\AA$ at room temperature and 1.03 $\AA$ at -263$^{\circ}C$, and the angles between OH vector and (001) plane are obtained 93.4$^{\circ}$∼93.6$^{\circ}$. The decrease in the length of OH with the increase in temperature should be due to the hydrogen bonding in the structure of phogopite.e.e.f phogopite.e.e.