The Rietveld Structure Refinement of Natural Phlogopite Using Neutron Powder Diffraction

중성자분말회절법을 이용한 금운모 결정에 대한 리트벨트 구조분석

  • 이철규 (연세대학교 지구시스템과학과) ;
  • 송윤구 (연세대학교 지구시스템과학과) ;
  • 전철민 (연세대학교 지구시스템과학과) ;
  • 김신애 (한국원자력 연구소 하나로이용기술개발부) ;
  • 성기훈 (한국원자력 연구소 하나로이용기술개발부)
  • Published : 2003.09.01

Abstract

The Rietveld structure refinement for the natural trioctahedral mica, phlogopite-1M (Parker Mine, Quebec, Canada) has been done by high resolution neutron powder diffraction at $25^{\circ}C$ and -263$^{\circ}C$. The structural formula of phlogopite determined by electron probe microanalysis is $K_2$(M $g_{4.46}$F $e_{0.83}$A $l_{0.34}$ $Ti_{0.22}$)(S $i_{5.51}$A $l_{2.49}$) $O_{20}$(O $H_{3.59}$ $F_{0.41}$). Cell parameters are a=5.30∼5.31 $\AA$, b=9.18∼9.20 $\AA$, c=10.18∼10.21 $\AA$, $\beta$=100.06∼100.08$^{\circ}$. Refinements converged to R values in the range of $R_{p}$=2.35%, $R_{wp}$=3.01%, respectively. In this study, the OH bond length is calculated to 0.93 $\AA$ at room temperature and 1.03 $\AA$ at -263$^{\circ}C$, and the angles between OH vector and (001) plane are obtained 93.4$^{\circ}$∼93.6$^{\circ}$. The decrease in the length of OH with the increase in temperature should be due to the hydrogen bonding in the structure of phogopite.e.e.f phogopite.e.e.

캐나다 퀘벡주 파커광산(Parker mine)에서 산출된 삼팔면체 운모인 금운모-1M 시료에 대하여 중성자분말회절 분석을 실시하고 리트벨트법을 통해 그 결정구조를 해석하였으며, 특히 X선 분말회절법으로는 해석이 어려운 금운모 구조 내의 OH기의 크기 및 길이, 그리고 방향성을 결정하였다. 연구에 이용된 금운모의 화학조성은 EPMA 분석결과 $K_2$(M $g_{4.46}$F $e_{0.83}$A $l_{0.34}$ $Ti_{0.22}$)(S $i_{5.51}$A $l_{2.49}$) $O_{20}$(O $H_{3.59}$ $F_{0.41}$)로 나타났다. 중성자 분말회절실험은 상온과 극저온(-263$^{\circ}C$)에서 실시하였으며, 회절값으로부터 구한 금운모의 단위포 상수는 a=5.30∼5.31 $\AA$, b=9.18∼9.20 $\AA$, c=10.18∼10.21 $\AA$, $\beta$=100.06∼100.08$^{\circ}$로 결정되었다. R지수의 경우 극저온(-263$^{\circ}C$)에서의 값이 $R_{p}$=2.35%, $R_{wp}$=3.01%로, 상온에서의 값( $R_{p}$=2.51%, $R_{wp}$=3.18%)보다 다소 적게 나타났는데, 이는 낮은 온도에서 온도인자 (B_iso)에 대한 영향이 적어짐에 따라 나타나는 결과로 생각된다. OH기의 결합거리는 상온에서 0.93 $\AA$, 저온에서 1.03 $\AA$, 방향성은 93.4$^{\circ}$∼93.6$^{\circ}$로 측정되었다 극저온에서 상온으로 온도가 상승하면서 OH기의 크기가 감소하는 것은 온도 상승에 따른 진동효과보다는 결정구조내의 수소결합과 관련있는 것으로 해석된다.석된다.석된다.으로 해석된다.석된다.석된다.

Keywords

References

  1. Alietti, E., Brigatti, M.F., and Poppi, L. (1995) The crystal structure and chemistry of high-aluminum phlogopite. Mineralogical Magazine, 59, 149-157.
  2. Chon, C.M., Kim S.A., and Moon H.S. (2003) Crystal structures of biotite at high temperature and heat-treated biotite using neutron powder diffraction. Clays and Clay minerals 51, 519-528.
  3. Giese, R.F. (1984) Electrostatic energy models of micas. Mineralogical Society of America. Reviews in Mineralogy 13, 105-144.
  4. Guggenheim, S. (1984) The brittle micas. In: Baily, S.W. (ed.), Micas, Reviews in Mineralogy, Vol. 13, Mineral. Soc. America, 61-104.
  5. Hawthore, F.C., Teertstra, D.K., and Cerny, P. (1999) Crystal-structure refinement of a rubbidian cesian phlogopite. American Mineralogist, 84, 778-781. https://doi.org/10.2138/am-1999-5-611
  6. Hazen, R.M. and Burnham, C.W. (1973) The crystal structure of one-layer phlogopite and annite. American mineralogist, 58, 889-900.
  7. Hendricks, S.B. and Jefferson, M.E. (1939) Polymorphism of the micas with optical measurements. American Mineralogist, 24, 729-771.
  8. Joswig, W. (1972) Neutronenbeugungsmessungen an einem 1M-Phlogopit. Neues Jahrbuch fuer Mineralogie Monatshefte (Band=Jahr), 1972, 1-11.
  9. Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H....O hydrogen bond length in Minerals. Monatsheftefur Chmie., 130, 1047-1059.
  10. Mookherjee, M., Redfern, S.A.T., and Zhang, M. (2001) Thermal response of structure and hydroxyl ion of phengite-2M1: an in situ neutron diffraction and FTIR study. Europen Journal of Mineralogy, 13, 545-555.
  11. Ohta, T., Takeda, H., and Takeuchi, Y. (1982) Mica polytypism: similarities in the crystal structures of coexisting 1M and 2M1 oxybiotite. American Mineralogist, 67, 298-310.
  12. Pabst, A. (1955) Rediscription of the single layer structure of the micas. American Mineralogist, 40, 967-974.
  13. Pavese, A., Ferraris, G., Prencipe, M., and Ibberson, R. (1997) Cation site odering in phengite from the Dora-Maira massif (western Alps): a variabletemperature neutron powder diffraction study, Europen Journal of Mineralogy, 9, 1183-1190.
  14. Rayner, J.H. (1974) The crystal structure of phlogopite by neutron diffraction. Mineralogical Magazine, 39, 850-856.
  15. Redhammer, G.J. and Roth, G. (2002) Single-crystal structure refinement and crystal chemistry of synthetic trioctaheral micas. Americam Mineralogist, 87, 1464-1476.
  16. Rietveld, H.M. (1967) Line profile of neutron powderdiffraction peaks for structure refinement. Acta Crystallographica., 22, 151-152.
  17. Rietveld, H.M. (1969) A profile refinement method for neuclear and magnetic structures. Journal of Applied Crystallography, 2, 65-71.
  18. Rodriguez-Carvajal, J. (2001) An introduction to the program FullProf 2000 (version July2001). Laboratorie Leon Brillouin, CEA-CNRS, France.
  19. Russell, R.L. and Guggenheim S. (1999) Crystal structures of near-end-member phlogopite at high temperatures and heat-treated Fe-rich phlogopite: The influence of the O, OH, F site. The Canadian Mineralogist, 37, 711-729.
  20. Takeda, H. and Donnay, J.D.H. (1966) Trioctahedral one-layer micas. III. Crystal structure of a synthetic lithium fluormica. Acta Crystallographica., 20, 638-646.
  21. Young, R.A. (1993) The Rietveld method. International Union of Crystallography, Oxford University Press.