Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.6.333

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System  

Kim, D.H. (Department of Electrophysics, Kwangwoon University)
Son, C.H. (Department of Electrophysics, Kwangwoon University)
Yun, M.S. (Department of Electrophysics, Kwangwoon University)
Lee, K.A. (Department of Electrophysics, Kwangwoon University)
Jo, T.H. (Department of Electrophysics, Kwangwoon University)
Seo, I.W. (Department of Electrophysics, Kwangwoon University)
Uhm, H.S. (Department of Electrophysics, Kwangwoon University)
Kim, I.T. (Department of Chemistry, Kwangwoon University)
Choi, E.H. (Department of Electrophysics, Kwangwoon University)
Cho, G.S. (Department of Electrophysics, Kwangwoon University)
Kwon, G.C. (Department of Electrophysics, Kwangwoon University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.6, 2012 , pp. 333-341 More about this Journal
Abstract
Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.
Keywords
Indium tin oxide; Thin film; Transparence conductive oxide; RF magnetron sputter; ${\gamma}$-Focused ion beam system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. L. Choi, J. Kor. Inst. Met. Mater. 45, 579 (2007)
2 C. J. Lee, S. K. Park, J. I. Han, W. K. Kim, and M. G. Kwak, IDMC 2000, 515 (2000).
3 J. R. Bellingham, A. P. Mackenzie, and W. A. Philips, Appl. Phys. Lett. 58, 2506 (1991).   DOI
4 J. Y. Song, D. Y. Jeong, C. S. Kim, S. H. Park, J. S. Jo, J. S. Song, J. S. Wang, and J. C. Lee, J. Korean Vac. Soc. 20, 210 (2010).
5 J. I. Pankove, Display Devices, Topics in Applied Physics (Springer-Verlag, Berlin, 1980), p. 40.
6 K. Osaza, T. Ye, and Y. Aoyagi, Thin Solid Films 246, 58 (1994).   DOI   ScienceOn
7 C. H. Liang, S. C. Chen, X. Qi, C. A. Chen, and C. Yang, Thin Solid Films 519, 345 (2010).   DOI
8 V. A. Dao, H. Choi, J. Heo, H Park, K. Yoon, Y. Lee, Y. Kim, N. Lakshminarayan, and J. Yi, Current Applied Physics 10, S506 (2010).   DOI   ScienceOn
9 A. Salehi, Thin Solid Films 324, 214 (1998).   DOI
10 I. A. Rauf, J. Appl. Phys. 79, 4057 (1996).   DOI
11 M. J. Alam and D. C. Cameron, Thin Solid Films 377-378, 455 (2000).   DOI   ScienceOn
12 C. H. Lee and C. S. Huang, Mater. Sci. Engineering B 22, 233 (1994).   DOI
13 E. Benamar, M. Rami, C. Messaoudi, D. Sayah, and A. Ennaoui, Solar Energy Material and Solar Cells 56, 125 (1998).
14 E. H. Choi, J. Y. Lim, Y. G. Kim, J. J. Ko, D. I. Kim, C. W. Lee, and G. S. Cho, J. Appl. Phys. 86, 6525 (1999).   DOI
15 G. Y. Kim, J. S. Oh, E. H. Choi, G. S. Cho, S. U. Kang, and J. W. Cho, J. Korean Vac. Soc. 11, 171 (2002).
16 H. S. Uhm, J. H. Choi, H. J. Yoo, G. C. Kwon, and E. H. Choi, J. Appl. Phys. 111, 053302 (2012).   DOI
17 H. J. Oh, J. W. Hyun, and J. H. Lee, J. Korean Vac. Soc. 12, 16 (2003).
18 D. Mergel, M. Schenkel, M. Ghebre, and M. Sulkowski, Thin Solid Films 392, 91 (2001).   DOI
19 D. Mergel, W. Stass, G. Ehl, and D. Barthel, Applied Physics 88, 2437 (2000).   DOI
20 D. H. Choi, M. J. Keum, A. R. Jeon, and J. K. Han, J. Korean Surface Soc. 30, 144 (2007).
21 Y. H. Ko, D. H. Ju, and J. S. Yu, J. Korean Vac. Soc. 21, 99 (2012).   DOI   ScienceOn
22 C. G. Choi, K. No, W.-J. Lee, H.-G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim, and C. Yoon, Thin Solid Films 258, 274 (1995).   DOI   ScienceOn
23 I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engstrom, Vacuum 35, 207 (1985).
24 I.-Y. Lee and K.-A. Lee, Optical Soc. of Korea Summer Conference Proceedings 176 (2000).
25 M. S. Lee, Kumoh National. Inst. of Tech. Thesis for a degree (2010).
26 M. H. An, Information & Comunication Engineering 10, (2005).
27 M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Thin Solid Films 326, 72 (1998).   DOI
28 L. Zhao, Z. Zhou, H. Peng, and R. Cui, Appl. Surface Sci. 252, 385 (2005).   DOI
29 P. Sujatha Devi, M. Chatterjee, and D. Ganguli, Mat. Latt. 55, 205 (2002).   DOI
30 A. K. Kukkarni, K. H. Schulz, T. S. Lim, and M. Khan, Thin Solid Films 345, 273 (1999).   DOI   ScienceOn
31 S. S. Kim, S. Y. Choi, C. G. Park, and H. W. Jin, Thin Solid Films 347, 155 (1999).   DOI
32 이혜정, 손창길, 유나름, 한용규, 정세훈, 이수범, 임정은, 이준호, 송기백, 오필용, 정진만, 고병덕, 문민욱, 박원배, 최은하, 한국전기전자재료학회 춘계학술대회 135 (2005).