• Title/Summary/Keyword: IoT 센서

Search Result 967, Processing Time 0.03 seconds

Lightweight Authentication Method Considering Resource Efficiency in Sensor Based IoT Environment (센서 기반 IoT 환경에서 자원 효율성을 고려한 경량화 인증 기법)

  • Lee, Jaeseung;Jun, Moon-Soeg;Kang, Jungho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.480-482
    • /
    • 2017
  • 최근 무선 통신 기술과 센서 디바이스들의 발달로 센서 기반 IoT 환경이 다양한 분야에 활용되고 있다. 하지만, 센서 네트워크 환경을 구성하는 센서 노드는 대부분 소형 하드웨어로 구성되어 있어 메모리, 처리능력, 에너지 등에서 많은 제약사항을 가지고 있다. 또한, 이기종 센서간의 통신 절차도 필요하다. 따라서, 본 논문에서는 DisTance-Bounding 프로토콜과 해시 함수를 이용하여 센서 노드간 인증 및 키 교환을 경량화 기법을 제안한다. 제안하는 시스템은 숲이나 군사지역 등 사람이 접근하기 어려운 곳에 활용되는 센서 노드들의 배터리 수명을 향상시켜 효율적이고 지속적인 데이터 수집이 가능할 것으로 기대된다.

Evaluation on real-time multi-point sensing performance of IoT-based hybrid measurement system (IoT 기반 하이브리드 계측시스템 실시간 다점 측정 성능 평가)

  • Kim, Heonyoung;Kang, Donghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.543-550
    • /
    • 2018
  • The rapid growth of IoT technology induced by the fourth industrial revolution has resulted in research into various types of wireless sensors, and applications based on this technology are prevalent in many areas. However, among the various sites where this technology is used, railway bridges and tunnels with lengths of tens of kilometers have problems with data acquisition, due to the signal noise induced by the long distance measurement and EMI induced by the high voltage power feeding system, when conventional electric sensors are used. To overcome these problems, many studies on fiber optic sensors have been conducted as a substitute for the conventional electric sensors. However, restrictions on the types of fiber optic sensors have limited their application in railways. For this reason, a hybrid measurement system with IoT based wireless data communication, in which both electric and fiber optic sensors can be applied simultaneously, has been developed. In this study, in order to evaluate the applicability of the hybrid measurement system developed in the previous study, a real-time test for 4 types of measurement environments, which reflect possible railway sites, is performed. As a result, it was confirmed that the signals from both the electric and fiber optic sensors, which were acquired at a remote area in real-time, showed good agreement with each other and that this measurement system has the potential to handle sensors with a sampling rate of 2.5 kHz. In the future, it is expected that the IoT-based hybrid measurement system will contribute to the improvement of structural safety by enabling real-time structural health monitoring when applied to various measurement sites.

Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring (상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발)

  • Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.

Various IoT Sensor based Laboratory Safety Management System (다중 IoT 센서 기반 실험실 관리 시스템)

  • Lee, Jongwon;Jeong, Daejin;Kang, Inshik;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.309-310
    • /
    • 2018
  • Recently, the systems for managing the labs provide services that can be managed in real time by using various sensors based on IoT. The system collects sensor data and transmits it to the server, identifies the dangerous situation, and sends operation commands to the devices. These systems have a centralized structure that slows data processing when managing multiple laboratories. To solve this problem, this paper proposes a system that manages laboratories in distributed processing environment to identify and manage risk situations. The sensor module is used to control the laboratory and to automatically identify and respond to the dangerous situation.

  • PDF

Development of Efficient and Flexible Sensor Reaction System based on Node.js, MQTT and MongoDB (Node.js, MQTT 및 MongoDB를 이용한 효율적이고 유연한 센서 리액션 시스템 개발)

  • Min, Kyung-Hyun;Igorevich, Rustam Rakhimov
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.797-800
    • /
    • 2016
  • IoT가 다양한 형태로 IT 기술을 이용하는 사물의 서비스를 제공하고 있다. 보다 스마트한 IoT 환경을 만들기 위하여 센서 데이터를 효율적으로 컨트롤하는 시스템이 필요하다. 본 논문은 계속적으로 생성되는 IoT 센서 데이터 를 효율적으로 처리하는 시스템을 Loosely Coupled 하고 확장 가능한 Sensor Reaction System의 아키텍처로 구성하고 있다. 본 논문에서는 Node.js, MQTT, MongoDB 기술을 사용함으로써 이벤트 기반한 stream 및 batch 처리를 할 수 있도록 센서 데이터를 메시지 큐에서 효율적으로 처리한다. 본 논문에서는 아두이노 보드에 온도 및 빛 센서를 부착한 센서 디바이스로부터 센서 테이터를 받아서 PC 기반의 MQTT Broker / Sensor Reactor / MongoDB 서버 시스템을 구축하고 성능을 분석하였다.

IP-Based Heterogeneous Network Interface Gateway for IoT Big Data Collection (IoT 빅데이터 수집을 위한 IP기반 이기종 네트워크 인터페이스 연동 게이트웨이)

  • Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.173-178
    • /
    • 2019
  • Recently, the types and amount of data generated, collected, and measured in IoT such as smart home, security, and factory are increasing. The technologies for IoT service include sensor devices to measure desired data, embedded software to control the devices such as signal processing, wireless network protocol to transmit and receive the measured data, and big data and AI-based analysis. In this paper, we focused on developing a gateway for interfacing heterogeneous sensor network protocols that are used in various IoT devices and propose a heterogeneous network interface IoT gateway. We utilized a OpenWrt-based wireless routers and used 6LoWAN stack for IP-based communication via BLE and IEEE 802.15.4 adapters. We developed a software to convert Z-Wave and LoRa packets into IP packet using our Python-based middleware. We expect the IoT gateway to be used as an effective device for collecting IoT big data.

A Study on Lightweight Block Cryptographic Algorithm Applicable to IoT Environment (IoT 환경에 적용 가능한 경량화 블록 암호알고리즘에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • The IoT environment provides an infinite variety of services using many different devices and networks. The development of the IoT environment is directly proportional to the level of security that can be provided. In some ways, lightweight cryptography is suitable for IoT environments, because it provides security, higher throughput, low power consumption and compactness. However, it has the limitation that it must form a new cryptosystem and be used within a limited resource range. Therefore, it is not the best solution for the IoT environment that requires diversification. Therefore, in order to overcome these disadvantages, this paper proposes a method suitable for the IoT environment, while using the existing block cipher algorithm, viz. the lightweight cipher algorithm, and keeping the existing system (viz. the sensing part and the server) almost unchanged. The proposed BCL architecture can perform encryption for various sensor devices in existing wire/wireless USNs (using) lightweight encryption. The proposed BCL architecture includes a pre/post-processing part in the existing block cipher algorithm, which allows various scattered devices to operate in a daisy chain network environment. This characteristic is optimal for the information security of distributed sensor systems and does not affect the neighboring network environment, even if hacking and cracking occur. Therefore, the BCL architecture proposed in the IoT environment can provide an optimal solution for the diversified IoT environment, because the existing block cryptographic algorithm, viz. the lightweight cryptographic algorithm, can be used.

A Study on Pseudo-random Number Generator with Fixed Length Tap unrelated to the variable sensing nodes for IoT Environments (IoT 환경에서 가변 센싱 노드들에 무관한 고정 길이 탭을 가지는 의사 난수 발생기에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.676-682
    • /
    • 2018
  • As the IoT world including WSNs develops, the number of sensor systems that sense information according to the environment based on the principle of IoT is increasing. In order to perform security for each sensor system in such a complicated environment, the security modules must be varied. These problems make hardware/software implementation difficult when considering the system efficiency and hacking/cracking. Therefore, to solve this problem, this paper proposes a pseudorandom number generator (FLT: Pseudo-random Number Generator with Fixed Length Tap unrelated to the variable sensing nodes) with a fixed-length tap that generates a pseudorandom number with a constant period, irrespective of the number of sensing nodes, and has the purpose of detecting anomalies. The proposed FLT-LFSR architecture allows the security level and overall data formatting to be kept constant for hardware/software implementations in an IoT environment. Therefore, the proposed FLT-LFSR architecture emphasizes the scalability of the network, regardless of the ease of implementation of the sensor system and the number of sensing nodes.

Lambda Architecture Used Apache Kudu and Impala (Apache Kudu와 Impala를 활용한 Lambda Architecture 설계)

  • Hwang, Yun-Young;Lee, Pil-Won;Shin, Yong-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.9
    • /
    • pp.207-212
    • /
    • 2020
  • The amount of data has increased significantly due to advances in technology, and various big data processing platforms are emerging, to handle it. Among them, the most widely used platform is Hadoop developed by the Apache Software Foundation, and Hadoop is also used in the IoT field. However, the existing Hadoop-based IoT sensor data collection and analysis environment has a problem of overloading the name node due to HDFS' Small File, which is Hadoop's core project, and it is impossible to update or delete the imported data. This paper uses Apache Kudu and Impala to design Lambda Architecture. The proposed Architecture classifies IoT sensor data into Cold-Data and Hot-Data, stores it in storage according to each personality, and uses Batch-View created through Batch and Real-time View generated through Apache Kudu and Impala to solve problems in the existing Hadoop-based IoT sensor data collection analysis environment and shorten the time users access to the analyzed data.

Design of Wearable IoT based Smart Mask (웨어러블 IoT기반 스마트 마스크 설계)

  • Park, Yonghyun;Jeong, SeongWoon;Jung, Kyung Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.300-302
    • /
    • 2021
  • Usage of a face mask has become mandatory in many countries after the COVID-19. This paper described to develop a IoT based smart mask system for monitoring face mask. The system developed in this paper has two main units, a sensor module, and a smartphone application. The sensor module consists of four components: temperature and humidity sensor, a heart rate sensor, and a BLE chip. This components work as a unit to collect data and stream them through an I2C port over BLE to a connected mobile device. The smartphone application is an Android application developed for smart phones. It enables the Android device to communicate with the sensor to receive sensor data, process, store and display results.

  • PDF