• Title/Summary/Keyword: Inverted Pendulum System

Search Result 326, Processing Time 0.036 seconds

Experimental Studies of Neural Compensation Technique for a Fuzzy Controlled Inverted Pendulum System

  • Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy rules may not work and result in tracking errors in some cases. First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights. Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum system are conducted and performances are compared.

A Fuzzy Control of a 3-dimensional Inverted Pendulum Using a 3-axis Cartesian Robot

  • Shin, Ho-sun;chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.1-176
    • /
    • 2001
  • Conventional researches almost have been focused on the one dimensional inverted pendulum. Recently, Sprenger et al[2] have researched a two dimensional inverted pendulum Observing human's action to control an inverted pendulum, one can recognize that human uses a three dimensional metier including the up and down motion. In this paper, we propose a fuzzy logic controller(FLC) of a new three dimensional inverted pendulum system. We derive a dynamic equation of the mechanism including a 3-axis cartesian robot and a inverted pendulum. We propose a design method of a fuzzy controller of the yaw and pitch angles of a inverted pendulum. In the design, the redundant degree-of-freedom(DOF) of the robot ...

  • PDF

Application to Stabilizing Control of Nonlinear Mobile Inverted Pendulum Using Sliding Mode Technique

  • Choi, Nak-Soon;Kang, Ming-Tao;Kim, Hak-Kyeong;Park, Sang-Yong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a sliding mode controller based on Ackermann's formula and applies it to stabilizing a two-wheeled mobile inverted pendulum in equilibrium. The mobile inverted pendulum is a system with an inverted pendulum on a mobile cart. The dynamic modeling of the mobile inverted pendulum was established under the assumptions of a cart with no slip and a pendulum with only planar motion. The proposed sliding mode controller was based upon a class of nonlinear systems whose nonlinear part of the modeling can be linearly parameterized. The sliding surface was obtained in an explicit form using Ackermann's formula, and then a control law was designed from reachability conditions and made the sliding surface attractive to the equilibrium state of the mobile inverted pendulum. The proposed controller was implemented in a Microchip PIC16F877 micro-controller. The developed overall control system is described. The simulation and experimental results are presented to show the effectiveness of the modeling and controller.

Fuzzy Control and Implementation of a 3-Dimensional Inverted Pendulum System (3차원 도립진자 시스템의 구현 및 퍼지 제어)

  • Shin, Ho-Sun;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.137-147
    • /
    • 2003
  • The fuzzy control and implementation of a new three-dimensional(3-D) inverted pendulum system are addressed. In comparison with conventional 1-D and 2-D systems, the 3-D inverted pendulum system is a proper benchmark system to simulate human's control action which includes the up and down motion to stabilize an inverted pendulum. To investigate the characteristics of the 3-D inverted pendulum system and to design of a fuzzy controller, we derive dynamic equations of the mechanism including a 3-axis cartesian robot and an inverted pendulum. We propose a design method of a fuzzy controller of the yaw and pitch angles of an inverted pendulum. In the design, the redundant degree-of-freedom(DOF) of the robot and the constrained workspace are taken into account. The performance of the proposed system is proved by experimental results using a developed PC-based Multi-Motion Control(MMC) board.

An implementation of a controller for a double inverted pendulum with a single actuator (단일 구동부를 갖는 2축 도립 진자를 위한 제어기 구현)

  • 남노현;이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.257-260
    • /
    • 1997
  • In this paper, the double inverted pendulum having a single actuator is built and the controller for the system is proposed. The lower link is hinged on the plate to free for rotation in the x-z plane. The upper link is connected to the lower link through a DC motor. The double inverted pendulum built can be kept upright posture by controlling the position of the upper link even though the proposed inverted pendulum has no actuator in lower hinge. The algorithm to control the inverted pendulum is consisted of a state feedback controller within a linearizable range and a fuzzy logic controller coupled with a feedback linearization control for the rest of the range. Concept of the virtual work is employed to drive the linearlized model for the state feedback controller. The feedback linearization controller drives a DC motor with the modified reference joint angle from the fuzzy controller which adjusts a upright posture of a proposed pendulum system. Finally, the experiments are conducted to show the validity of the proposed controller.

  • PDF

Composite Control for Inverted Pendulum System

  • Kwon, Yo-Han;Kim, Beom-Soo;Lee, Sang-Yup;Lim, Myo-Taeg
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.84-91
    • /
    • 2002
  • A new composite control method for a carriage balancing single inverted pendulum system is proposed and applied to swing up the pendulum and to stabilize it under the state constraint. The target inverted pendulum system has an extremely limited length of the cart(below 16cm). The proposed swing-up controller comprises a sliding mode control algorithm and an optimal control algorithm based on two regions: the region near the inverted unstable equilibrium position and the rest of the state space including the downward stable equilibrium position. The sliding mode controller uses a switching control action to converge along the specified path(hyperplane) derived from energy equation from a state around the path to desired state(standing position). An optimal control method is also used to guarantee the stability at unstable equilibrium position. Compared with the reported controllers, it is simpler and easier to implement. Experimental results are given to show the effectiveness of this controller.

Time Delay Control of an Inverted Pendulum using Robot Manipulator (로봇 매니플레이터를 이용한 도립진자의 시간 지연 제어)

  • Chi, Jong-Hwan;Han, Sang-Wan;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3057-3059
    • /
    • 1999
  • The inverted pendulum is an unstable, nonlinear system exposed to disturbances and its system parameters change. This paper presents the Time Delay Control design of the inverted pendulum using robot minipulator. The results obtained from a simulations indicated a reference tracking of the system. This paper will implement, the time delay control of the inverted pendulum using a robot manipulator, It will be that the time delay can control the inverted pendulum using a manipulator.

  • PDF

Stabilization Control for Limit Cycle of an Inverted Pendulum System

  • Tajima, Takeshi;Ishii, Chiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.507-507
    • /
    • 2000
  • In this paper, a kind of limit cycle of an inverted pendulum system is discussed. We propose a stabilization control law for such a limit cycle of an inverted pendulum system that the pendulum rotates periodically. Besides, the stabilization control law is extended so as to ensure not only stability of the limit cycle but also an L$_2$-gain disturbance attenuation in the presence of modeling error and viscosity friction.

  • PDF

Implement of the inverted pendulum system of cart type via PID control method (카트형 역진자 시스템에 대한 PID제어)

  • Cho, Hyung-Min;Kim, Min-Soo;Dang, Hyo-Jin;Lee, Seung-Hoon;Park, Myung-Jin;Kwon, Oh-Min
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.85-86
    • /
    • 2015
  • This paper is to study the inverted pendulum system of cart type by using the method of PID control. This system is that inverted pendulum maintain a constant balance from unstable state by moving a cart. It is controlled via the PID controller. PID controller is proposed to maintain a constant balance for nonlinear system such as the inverted pendulum system so PID control is widely used in the industrial field because of superior control performance, easy implementation and relatively simple structure. To design this system, it consist of Encorder and DC motor. Encorder is used to read the angle of the pendulum and DC motor is used to change the angle. We can verify results of experiment through the Matlab simulator via the inverted pendulum system of cart type.

  • PDF

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.