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Composite Control for Inverted Pendulum System

Yo-Han Kwon, Beom-Soo Kim, Sang-Yup Lee, Myo-Taeg Lim

Abstract: A new composite control method for a carriage balancing single inverted pendulum system is proposed and applied to
swing up the pendulum and to stabilize it under the state constraint. The target inverted pendulum system has an extremely limited
length of the cart(below 16cm). The proposed swing-up controller comprises a sliding mode control algorithm and an optimal control
algorithm based on two regions: the region near the inverted unstable equilibrium position and the rest of the state space including
the downward stable equilibrium position. The sliding mode controller uses a switching control action to converge along the specified
path(hyperplane) derived from energy equation from a state around the path to desired state(standing position). An optimal control
method is also used to guarantee the stability at unstable equilibrium position. Compared with the reported controllers, it is simpler and
easier to implement. Experimental results are given to show the effectiveness of this controller.
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L. Introduction

An inverted pendulum is one of the most commonly stud-
ied systems in the control area. The control objective of the
inverted pendulum is to swing up the pendulum hinged on the
moving cart of a linear motor from a stable position(vertically
down state) to the zero state(vertically upward state) and to keep
the vertically upward state in spite of the disturbance[1].

Many swing up control methods have been reported[2][3][4]
[5][6]. The feed-forward bang-bang control method for the
inverted pendulum system is very sensitive to modeling er-
ror, noise, and disturbance[7]. The bang-bang control control
law with pseudo state feedback proposed in[8] was success-
fully demonstrated on the rotating-arm inverted pendulum sys-
tem without a rail length restriction. A linearized technique
was applied to the carriage balancing single inverted pendu-
lum(CBSIP) system with long rail length or to the rotating-arm
single inverted pendulum system{9]{10]. But the nonlinearity
of an inverted pendulum system is too strong to linearize. This
method is not suitable for controlling the CBSIP system where
the rail length is extremely limited. And other swing up control
methods were applied to CBSIP system where the rail length is
longer than 50cm [11][12][13].

In this paper, we design a stable and robust controller for
CBSIP systems under the extremely limited travel range of the
cart(below 16¢m). The proposed swing-up controller com-
prises a sliding mode control algorithm and an optimal control
algorithm based on the pendulum regions. Two control methods
are applied by dividing the system into two regions; the region
near the origin of the state space, that is, the inverted and unsta-
ble equilibrium position, and the rest including the downward
stable equilibrium position, from which the swing-up control
starts.

The organization of this paper is as follows. In Section 2, the
inverted pendulum control system and its mathematical model
are outlined. Using the result of Section 2, an optimal control
method to stabilize the pendulum around the zero state on the
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basis of the linearized model is described in Section 3. A slid-
ing mode controller design method considering the extremely
limited rail length is developed in Section 4. In Section 5, we
compare the proposed method with the previously reported al-
gorithms by simulation. Then we perform the experiment to
verify the effectiveness and robustness of the proposed control
algorithm. Finally, the conclusion is given in the last section.

II. Model of the plant
Block diagram of the inverted pendulum control system is
illustrated in Fig. 1. The pendulum rotating freely in the verti-
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Fig. 1. Experimental setup of the pendulum control system.

cal plane and the rotary encoder for measuring the angular dis-
placement of the pendulum are installed on the cart. The cart is
replaced by a linear motor having a built-in encoder to measure
the displacement of the cart. The measured signal flows into the
DSP board to calculate the control law which is applied to the
linear motor through the three phase inverter.

The mathematical model of the pendulum plant can be con-
structed by using the Lagrange equation[10].
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with

1=z, T2 =10, Qq:[{;],LzT—V

where T is kinetic energy, V is potential energy, x is a position
of cart, @ is a pendulum angle, L is Lagrangian, and D is a
Rayleigh dissipation function. Kinetic energy of the inverted
pendulum is as follows:

T =Teart + Tpendulum (2)
with

.2
Teart =sMcT

2
Tpenduium =%m11‘1é + %J@g
vg =i + 7y
= (a: + 16 cos 0)2 +1%6%sin 0
where m. is mass of cart, m1 is mass of pendulum, and [ is the

length between the center of mass of the pendulum and the axis.
Thus we can obtain the Kinetic energy T as follows:

1.1 . ] 2 2p2. 2 1 50
T = smed’ + zm ((:choso) + 126 sin 9) + 57
3)

Potential energy of the inverted pendulum is given by (4). Ac-
tually the potential energy of the cart is unchanged.

V= ‘/ca‘rt + Vpendulum (4)

In (4), Veart is potential energy of the cart and Vpendutium iS
potential energy of the pendulum

Vcart =0
Vpendulum =19 (l cosf + ll)

where g is the gravity constant. Therefore the potential energy
equation becomes as follows:

V =mig{lcosf + 1) (5)
Rayleigh dissipation function is a function for the energy which

is spent by friction and given by

1 .1 ..
D—ivm-}—iC’H ©)

where v is a cart friction coefficient and C' is a pendufum fric-
tion coefficient.
We can express the Lagrangian by using (3) and (5)

L=T-V
I 1 . ; 2 00 .2
=5Mmed + 5 <(m+l0cos9) + 1°6° sin 9)
-I-%Jﬁq—mlg(lcosH—f—ll) 0

From the Lagrangian equation (1), we can obtain the following
nonlinear state equation.

X = F(X,t) + B(X)u ®)

where
z
S 8
t =
FX.0 = | o
Fy
0 T
S = 0
B(X) = 0 3 X=1.1,
mi &
mai 0
-1
mi1 miz] _ [me+m1 malcost
ma1 maz|  |mylcos® mill+J
with

F3 =m11 (mllsin 06> — v:i:) + miz (mllg sinf — C’é)
Fy =mos (mllsin 06> — Ui) + mao (mllg sinf — Cé)

111, Optimal controller design
In this section, we design an optimal controller to stabilize the
pendulum around the zero state by using the linearized model.
At the target point (§ = 0) we can obtain the linearized model
under the following assumptions.

=0, cosf=1, sinff=8 C)
We can obtain the linearized model (10) by using (8) and (9)
X = AX + Bu (10)
where
0 0 1 0 0
0 0 0 1 0
A= 0 milgniz —-wvnii —Cnaa|’ B = ni1 |’
0 malgnzge —vnz —Cna n21
[mc +my mal ] _ [7111 7112}
mal mul®+ J n21 M2
The quadratic cost func;ion to be minimized is given by
J= /Ooo (X7QX +u"Ru) dt an

where Q € R™ " is a positive semidefinite matrix and R €
R™*™ is a positive definite matrix.
The well-known optimal control law is given by

u=—R'BTPX(t) (12)

with matrix P representing the positive semidefinite stabilizing
solution for the following algebraic Riccati equation

ATP+PA—PBR'BTP+Q=0 (13)

In this paper, we consider the inverted pendulum having state
constraint and limited amplitude of input. Assume that the cart
is constrained to move in the horizontal range. So we must con-
sider the available rail range to design the controller. The sta-
bilizing optimal control law for the performance index is given
by

u=[70.7107 203.3644 88.8864 33.4018] X (14)

with the following weighting matrix ¢ and R

5000 0 0 O
0 100 0O

0 0 10

0 1

JR=1
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Iv. Sliding mode controller design

In the swing up control, we use the full nonlinear dynamic
model obtained in Section Iland apply a sliding mode control
method to swing up the pendulum. In designing the sliding
mode control law, a switching surface is designed and then a
reaching control law is designed to drive the states to the de-
signed switching surface.
1. Swing up control

The nonlinear system represented by (8) has a stable equilib-

rumat X; = [z. 7 0 O]T, and an unstable equilibrium

atX; = [c. 0 0 0] . Both of these equilibrium points
can be obtained with an arbitrary carriage position ., therefore
the carriage’s position control is possible. Without the control
(u = 0), the system’s natural behavior can be observed by re-
leasing it from the initial state X, = [O 6 O O]T, where
B0 # 0° and 6y # 180°. Atthe §p = 10° the numerical so-
lution of (8) is computed and shown in Fig. 2. The natural be-
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Fig. 2. Natural behavior of CBSIP system.

havior of the system is damped vibration of both the pendulum
and the carriage. Two important factors can be observed from
the system’s natural behavior: (i) due to the translational and
the rotational friction, each amplitude of the pendulum and the
carriage decreases with the time; and (ii) by decreasing ampli-
tudes, the circular frequency of the vibration increases with the
time, which is a nonlinear characteristic. In order to swing-up
the pendulum toward the inverted vertical position, its kinetic
energy level must be increased. In this system, it is achieved
by applying force to the carriage, and this force must be large
enough to overcome the friction. The direction and the ampli-
tude of the input force are controlled to increase the pendulum’s
kinetic energy, despite the difficulties that (a) the force u applies

to the pendulum indirectly through the carriage, (b) the vibra- -

tions of the pendulum and the carriage are nonlinear, and (c)
there is a phase-lag between these two vibrations[11].

When the total energy of the pendulum equals to the pendu-
lum’s potential energy at the inverted vertical position, the pen-
dulum will be swung up to its upright position. Applying the
force to the cart in the direction of Fig. 3 until /sinf = 0 ac-
cording to the nonlinear vibration of the pendulum reduces the
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Fig. 3. Carriage Balancing Single Inverted Pendulum System.

calculation efforts and increases the pendulum’s energy within
short movement of the cart. Thus we can obtain the swing up
control law as follows:

us = —kgsin (15)

The swing up control (15) requires an assumption that the first
initial value of 8 is not £nm, n = 1,3,5,---. The efficient
swing up way is to apply the force at the frequency of pendu-
lum’s nonlinear vibration to drive the pendulum into resonance
in a controlled manner. To change the energy as fast as possible,
the magnitude of control signal should be as large as possible.
Therefore we can rewrite (15) as follows:

us = —kssgn(sin ) (16)
where
1 ifz >0,
-1 ifzx<0

sgn(z) = {

By using (16), we can relax the initial condition constraint.
2. Tuning and switching condition

The tuning of ks depends on the following two factors: the
required rail range and the required swing-up time at which the
pendulum is close to the inverted vertical state(normally within
+10°). Generally, increasing ks leads to decrease swing-up
time and to increase the required rail range. The described
swing up control method can achieve the goal within the short-
est time when k; is the maximum of bounds of input.

To switch between the swing-up control and the optimal con-
trol described in Section IIJ.we consider three important fac-
tors[11].

1. The closed-loop system with the optimal control has a re-
stricted stable state region around the origin because the con-
troller design is based on the linearized system.

2. The final state of the swing up control must not force the
carriage beyond the available rail range.

3. During the swing up control the pendulum should not be
allowed to go over the top.

The ideal swing up controller is that § equals to zero at § = 0.
But, using an arbitrary value of ks, we can not guarantee 6=0
at 8 = (. Therefore we use a sliding mode controller so that for
an arbitrary &k, an angular velocity w is close to zero near the
target point.
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3. Sliding surface design

Sliding mode control, often referred to as variable struc-
ture control, is a high-speed switching feedback control that
switches between two values based upon some rules to drive
the nonlinear plant’s state trajectory onto a specified switching
surface in the state space.

To design an appropriate switching surface, the plant having
a restricted switching surface must respond in a desired manner
and the switching control law satisfies a set of sufficient con-
ditions for the existence of sliding mode. The next important
aspect of sliding mode control is to guarantee the existence of a
sliding mode.

The sliding mode exists when the state trajectory z(¢) of the
controlled plant satisfies the sliding surface S{x(t)) = 0 at ev-
ery t > to for some to.

The hyperplane for the inverted pendulum system is designed
to execute both swing up and stabilization of the pendulum. It
is desirable to design the hyperplane for unstable structure with
small damping from the energy balance. To design the hyper-
plane for the pendulum, we use the energy equation of the pen-
dulum given by [12][14]

E= %J92+mgl(cosﬁ—1) a7

where £ = 0 at the standing position. In [12], the author de-
signed a sliding mode controller with an observer by using the
energy equation (17) to suppress the chatter of control input. In
[14], the authors used a bang-bang strategy based on the the en-
ergy equation (17). When E = 0, the pendulum will be stood
without the control input. We can obtain the hyperplane of the
pendulum by letting £ = 0in (17).

0= /miglé+ V' 2(1 — cos 8)sign(sin §) (18)

where
1 ifx > 0,
sign(z) =<0 ifz =0,
-1 ifz<0.

(18) represents the relation between 6 and 8 which makes the
pendulum converge to the origin. Fig. 4 shows this relation.
If there exists an input which makes the state track the trajec-
tory in Fig. 4, then the pendulum eventually converges to the
origin. Therefore (18) can be directly a hyperplane of sliding
mode control and we can rewrite hyperplane equation as fol-
lows:

5=/ ;i—ﬁﬂ + v/2(1 — cos 8)sign(sin ) (19)

4. Sliding mode controller

Now we consider the sliding mode controller design method
considering the extremely limited rail length. The purpose
of general sliding mode control is searching for control in-
put which makes all states in the state space converge to the
hyperplane. The previously described swing up control law
us, = —kssgn(sin@d) makes states approach near to s = 0.
We design the sliding mode controller by using the following

Phase Plane

d @ /dt (radisec)

15 L L L L L s L L L
-2 -1 0 1 2 3 4 5 8 7 8

8 {rad}

Fig. 4. State trajectory using energy equation.

Lyapunov function

v :%STS
v ZST,é —_ STa—f)? = STG)._( (20)

X
In 20), G = [O fcos(9)] © ,/—WTJQ—I},Uisapositive

definite matrix, and ¥ is a negative definite matrix. It is difficult
to obtain a Lyapunov function which satisfies (20) by analytic
method. Thus we design a control law by using the following
physical concept. The control law in (16) applies a force to
the cart according to the nonlinear movement of the cart, which
increases the angular velocity by repeating the swing up op-
eration and the states reach the designed sliding surface. The
reference angular velocity defined on the sliding surface is eas-
ily calculated by referring to the corresponding angle. If the
angle belongs to a range of 90° to 270° and exceeds the corre-
sponding reference angular velocity, then the force is applied to
the cart from the opposite direction to decrease the angular ve-
locity. When the angular velocity does not reach the reference
angular velocity, the control law (16) is applied to increase the
angular velocity until the angular velocity reaches the reference
angular velocity. In the range of 270° to 90°, we use a contrary
control law described in (21).

0 3m s
=< - - s = —kssi — Ure i
5 < 0 < 5 u kssign (0 0 f) sgn (sin #)
3 s .
< o - s = kssi — Ure i
5 = 0 < 2 us = kgsign (0 0 f) sgn (sin 6)

21
The control laws defined in (21) can be rewritten as follows:

us = — kssign (0 - éref) sgn {cos @ - sin 6)

= — kssign (s —24/2(1 — cos 8)sign(sin 9))

x sgn (cos @ - sin §) 22)

where 6 and ére 7 are obtained from (19) and (18) respectively.
We verified that the s, especially —0.6 < s < 0.6, around
s = 0 converges to the s = 0 and the v in (20) is positive
definite and the ¥ in (20) is negative definite by simulation with
the designed control law.
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V. Simulation and experimental results

In this section, we compare the proposed method with the
Takeshi Kawashima’s sliding mode control algorithm[12] and
Alan Bradshaw’s method [11] by numerical simulation. And
then experimental results are described to demonstrate the pro-
posed method.

In Takeshi Kawashima'’s sliding mode control algorithm [12],
the control law v and the hyperplane s are as follows:

_f - N fadz  fadf
_f T + /2(1 — cos8)sign(sin§) + , + = i
(23)
Y-S
U =—o(|tegl + €) ——— (24)
(fvea] + ) o
where
_ F(X,t) _ 0Os _ >
Ueqg = ~ 3 G"ax—»s ’Y—GB(X)?EO’

a=4, e=0.1, p=0.01

and f = [fi fo fs fa] isafeedback gain of the optimal

control derived by using the linearized model at the standing
position. Alan Bradshaw’s method [11] is as follows:

us =ksw 25)

u=f+X (26)

Fig. 5 and Fig. 6 show the results when the rail length is re-
stricted to 80cm.
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Fig. 5. Time history of CBSIP system (the rail space is restricted
to 80cm).

In Fig. 5, Takeshi Kawashima’s sliding mode controller uses
the full rail length (80cm), but the proposed controller uses only
the half range of rail and the pendulum converges to the target
point. Moreover, in the proposed control method, the displace-
ment of the cart rapidly converges to zero. Fig. 7 and Fig. 8
show the results when the rail length is restricted to 16¢cm. In
this case, Takeshi Kawashima’s method fails to converge. Alan
Bradshaw’s swing up controller cannot generate energy enough
to swing up. On the other hand, using the controller designed
in this paper we can see that the pendulum converges to origin
within 2.5 second.
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Fig. 6. Phase plane of CBSIP system (the rail space is restricted
to 80cm).
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Fig. 7. Time history of CBSIP system (the rail space is restricted
to 16cm).

Phase Piane

15 T T T T
\1 — Takeshi
- - Bradshaw
Proposed method 4
~ _reference trajectory

a0 /dt (rad/sec)

s
0 1 2 3 4 5 [} 7
8 (rad)

Fig. 8. Phase plane of CBSIP system (the rail range is restricted
to 16cm).

Actual experiments have been done by TMS320C32 DSP
used as the controller with a sampling time of 500 usec, a ro-
tary encoder with 2000 pulse/rev, and a liner motor used as a
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cart. The linear motor specification is described in Table 1. The
physical parameters of the inverted pendulum system are given
in Table. II. The snapshot picture of this inverted pendulum con-
trol system is shown in Fig. 9. The pendulum is mounted on the
linear motor. It can be observed in Fig. 10 that the pendulum
is maintained at the upright equilibrium position within 3.5sec.
The corresponding phase plane trajectory is given in Fig. 11.

Table 1. Linear motor specification

Parameter Unit Value

Peak Current amp RMS 8.18
Continuous Current amp RMS @25°C3.7

Resistance ohm 52

Force Constant N/amp 26.20

Back EMF volts RMS/m/s 21.59

Thermal Resistance °CIW 1.407
Electrical Time Constant msec @25°C 0.6

Table 2. Parameters of the system

Parameter Value Unit
mass of cart m. 2.5 Kg
maximum cart movable
distance from the center of 80 mm
the rail (Zmaz)
maximum force (M) 4 N
length of the pendulum () 400 mm
mass of the pendulum (m1) 0.088 Kg
diameter of the pendulum 6 mm
moment of the inertia of the
pendutum (J) 0.00117 | Kg-m?
pendulum friction coefficient (C) 30 N-m-s

Fig. 9. Experimental setup of the inverted pendulum control
system.

In order to verify the robustness of this proposed control
method, the pendulum is hit by hand to induce an external dis-
turbance force at the time 6.5sec and 15sec, respectively. The
dynamic responses of the inverted pendulum are shown in Fig.
12 for the position of the cart, angle of pendulum, and angu-
lar velocity. Fig. 13 shows the phase plane trajectory of the

Position of Cart
0.1 T T T T | E— T T —

meter(m)
o

L . . .
Angle of Pendulum a5 4 45 5
10 T T — . . '

0 0.5 1 15 2

25
time(sec)

Fig. 10. Dynamic response of the inverted penduium.
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Fig. 11. Phase plane trajectory of the inverted pendulum.
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Fig. 12. Dynamic response of the inverted pendulum with ex-
ternal disturbance

inverted pendulum. In Fig. 12 and 13, it is observed that the
linear motor moves quickly in response to the external force
applied to the pendulum and the pendulum reaches the speci-
fied unstable equilibrium upright position within 3.0 ~ 3.5sec.
The proposed composite control consists a sliding mode con-
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Phase Plane
18 T T T T T ¥ T

d 8 /dt (rad/sec)
o
—
L

5| 4

L

15 1 - "
) -6 -4 -2 0 2 4 6 8
8 {rad)

Fig. 13. Phase plane trajectory of the inverted pendulum with
external disturbance

troller used to swing up the pendulum and an optimal controller
used to stabilize the pendulum around the zero state, where the
control switching boundary value is & = 10°. Thus in Fig.
10 and Fig. 12, the input trajectories around the target point
6 = 0° are obtained by using the optimal control algorithm de-
scribed in section 1] and show weak chattering phenomena
rather than the results of Takeshi Kawashima’s sliding mode
control method[12] shown in Fig. 5 and Fig. 7. The experimen-
tal result in Fig. 10 is similar to the simulation result in Fig. 7
including the control input.

VI. Conclusion

The main purpose of this paper is to design the swing up con-
troller and stabilizing controller under the environment of ex-
tremely limited movable length of cart. To guarantee acceptable
performances in spite of the input and state constraint, the whole
control algorithm comprises a sliding mode control based on
the nonlinear model for swing up the pendulum and an optimal
control to stabilize by using the linearized model. The simula-
tion results and the experiment results under the state constraint
showed that the control performance was very good. The pro-
posed control method is robust to an external disturbance.
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