• Title/Summary/Keyword: Inverse design method

Search Result 356, Processing Time 0.035 seconds

Design Evaluation of Pickup Device Collecting Deep-Sea-Manganese Nodules (심해저 망간단괴 집광기 채집장치의 설계평가)

  • Choi, Jong-Soo;Lee, Tae-Hee;Hong, Sub;Sim, Jae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.68-74
    • /
    • 1998
  • Performance and efficiency of deep seabed collector is a primary factor for feasibility of commercial deep ocean mining. The efficiency of manganese nodules collector depends on vehicle mobility relative to undulating seafloor and is attributed pickup head to keep altitude and elevation of it against seafloor. For this reason, motion control of pickup head relative to the changing deep-sea topography and other disturbances is of particular importance in design of pickup device. The concept of design axiom is applied to a pickup device of hybrid type in order to evaluate the concept design. Kinematic analysis conducted in absolute Cartesian coordinates gives position, velocity, and acceleration of the hydraulic cylinders which enable the pickup head to keep the preset optimal distance from seafloor. Inverse dynamic analysis provides the driving forces of hydraulic cylinders and the reaction forces at each joint. Design sensitivity analysis is performed in order to investigate the effects of possible design variables on the change of the maximum strokes of hydraulic cylinders. The direct differentiation method is used to obtain the design sensitivity coefficients.

  • PDF

Design of Robust Fuzzy Controllers via Inverse Optimal Approach (역최적화 방법을 이용한 강인한 퍼지 제어기의 설계)

  • 곽기호;임재환;박주영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.477-486
    • /
    • 2001
  • In this paper , we study the problem of designing TS(Takagi-Sugeno) fuzzy controllers for the systems that can be approximated or represented by the TS fuzzy model. The main strategy used in this paper is the inverse optimal approach, in which the cost function is determined later than the Lyapunov function and its corresponding control input satisfying the design requirements such as stability, decay rate, and robustness against uncertainty. This approach is useful because it yields controllers satisfying the inherent robustness of optimal controllers as well as the considered design goals. The design procedures established in this paper are all in the from of solving LMIs(Iinear matrix inequalities). Since the LMIs arising in the design procedures can be solved within a given tolerance by the interior point methods. the design method of the paper are efficient in practice. The applicability of the proposed design procedures is demonstrated by design examples.

  • PDF

An Efficient Computing Method of the Orthogonal Projection Matrix for the Balanced Factorial Design

  • Kim, Byung-Chun;Park, Jong-Tae
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.249-258
    • /
    • 1993
  • It is well known that design matrix X for any factorial design can be represented by a product $X = TX_o$ where T is replication matrix and $X_o$ is the corresponding balanced design matrix. Since $X_o$ consists of regular arrangement of 0's and 1's, we can easily find the spectral decomposition of $X_o',X_o$. Also using this we propose an efficient algorithm for computing the orthogonal projection matrix for a balanced factorial design.

  • PDF

A Study on Pick-up Device of Beep Sea Manganese Nodules Collector (심해저 망간단괴 집광기의 채집장치에 관한 연구)

  • Hong, Sub;Sim, Jae-Yong;Lee, Tae-Hee;Choi, Jong-Soo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.891-895
    • /
    • 1996
  • Performance and efficiency of hybrid (hydraulic-mechanical) pick-up device of deep sea manganese nodules collector are very sensitive to altitude and altitude of pick-up head relative to undulating seafloor. For this reason, motion control of pick-up head relative to the changing deep sea topography and other disturbances is of particular importance in design of pick-up device. The concept of design axiom is applied to a pick-up device of hybrid type. Kinematic analysis conducted in absolute Cartesian coordinates gives position, velocity, and acceleration of the hydraulic cylinders which enable the pick-up head to keep the preset optimal distance from seafloor. Inverse dynamic analysis provides the driving forces of hydraulic cylinders and the reaction forces at each joint. Design sensitivity analysis is performed in order to investigate the effects of possible design variables on the change of the maximum strokes of hydraulic cylinders. The direct differentiation method is used to obtain the design sensitivity coefficients.

  • PDF

Hysterersis Compensation in SMA Actuators Through Numerical Inverse Preisach Model Implementation

  • Kha, Nguyen-Bao;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2048-2053
    • /
    • 2005
  • The aim of this paper is to compensate hysteresis phenomena in Shape Memory Alloy (SMA) actuators by using numerical inverse Preisach model. This is used to design a controller that correct hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in open-loop control system in order to obtain desired input-output relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.

  • PDF

The Design of Adaptive Controller for Nonminimum-Phase System using Approximate Inverse System (근사화 inverse 시스템을 사용한 비최소 위상플랜트의 적응제어기 설계)

  • Oh, Hyun-Cheol;Kim, Yoon-Sang;Jwa, Jong-Cheol;Lee, Jae-Chun;Kim, Jae-Il;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.575-577
    • /
    • 1997
  • This paper presents a approach to the adaptive control of nonminimum-phase continuous-time systems. It is shown that pole-zero cancellations can be avoided by using approximate inverse systems. The computer simulation results are presented to illustrate the effectiveness of the proposed method.

  • PDF

A Study on the Inverse Radiation Analysis in a Cylindrical Enclosure (원통형상에서의 역복사 해석에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1516-1521
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy.

  • PDF

Robust Intelligent Digital Redesign (강인 지능형 디지털 재설계 방안 연구)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.220-222
    • /
    • 2006
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated lineal operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a T-S fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

  • PDF

Object Tracking based on Relaxed Inverse Sparse Representation

  • Zhang, Junxing;Bo, Chunjuan;Tang, Jianbo;Song, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3655-3671
    • /
    • 2015
  • In this paper, we develop a novel object tracking method based on sparse representation. First, we propose a relaxed sparse representation model, based on which the tracking problem is casted as an inverse sparse representation process. In this process, the target template is able to be sparsely approximated by all candidate samples. Second, we present an objective function that combines the sparse representation process of different fragments, the relaxed representation scheme and a weight reference prior. Based on some propositions, the proposed objective function can be solved by using an iteration algorithm. In addition, we design a tracking framework based on the proposed representation model and a simple online update manner. Finally, numerous experiments are conducted on some challenging sequences to compare our tracking method with some state-of-the-art ones. Both qualitative and quantitative results demonstrate that the proposed tracking method performs better than other competing algorithms.

Evolutionary design of Takagi-Sugeno type fuzzy model for nonlinear system identification and time series

  • Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.1-93
    • /
    • 2001
  • An evolutionary approach for the design of Fuzzy Logic Systems(FLSs) is proposed. Membership functions(MFs) in Takagi-Sugeno type fuzzy logic system is optimized through evolutionary process. Output singleton values are obtained through pseudo-inverse method. The proposed technique is unique for that, to prevent overfilling phenomenon, limited-level RBF membership functions are used and the new fitness function is invented. To show the effectiveness of the proposed method, some simulations results on model identification are given.

  • PDF