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Abstract 
 

In this paper, we develop a novel object tracking method based on sparse representation. First, 

we propose a relaxed sparse representation model, based on which the tracking problem is 

casted as an inverse sparse representation process. In this process, the target template is able to 

be sparsely approximated by all candidate samples. Second, we present an objective function 

that combines the sparse representation process of different fragments, the relaxed 

representation scheme and a weight reference prior. Based on some propositions, the proposed 

objective function can be solved by using an iteration algorithm. In addition, we design a 

tracking framework based on the proposed representation model and a simple online update 

manner. Finally, numerous experiments are conducted on some challenging sequences to 

compare our tracking method with some state-of-the-art ones. Both qualitative and 

quantitative results demonstrate that the proposed tracking method performs better than other 

competing algorithms.  
 

 

Keywords: Object tracking; robust tracking; sparse representation; relaxed representation 



3656                                                                                Bo et al.: Object Tracking based on Relaxed Inverse Sparse Representation 

1. Introduction 

As one of the important problems in computer vision and pattern recognition, object tracking 

plays a critical role in many research lines (e.g., motion analysis, video compression and 

activity recognition) and has many useful applications in realistic scene (e.g., traffic control, 

human computer interface and video surveillance) [1][2]. The traditional tracking methods 

often work well under some well-controlled conditions or track some specific objects [3][4] 

(such as human, car, face and so on); while online visual tracking aims to track any object in 

realistic conditions [5]. It is very difficult to develop an effective online tracking method for 

many challenging factors [6], which mainly include illumination variation, pose change, 

partial occlusion, scale change, background clutter and so on.  

From the perspective of adopted theories and techniques, online visual tracking algorithms 

can be categorized into three classes: tracking methods based on state estimation, tracking 

methods based on online classifiers and tracking methods based on template matching. First, 

tracking methods based on state estimation consider the tracking problem as a state estimation 

problem and reclusively estimate the states of the tracked target, such as Kalman filter [7], 

particle filter [8][9] and so on. This type of tracking methods mainly focus on designing an 

effective motion model and lacks of the discussion of a robust appearance model, thus, leads to 

an unstable tracking performance. Second, tracking methods based on online classifiers 

(usually called discriminative trackers) treat the tracking problem as a local detection problem, 

which aims to distinguish the tracked object from its local surroundings and learn robust 

online classifiers to capture appearance changes of both object and background during the 

tracking process. Thus, many classical and state-of-the-art machine learning algorithms can be 

used to slove the tracking problem, including support vector tracking (SVT) [10], ensemble 

tracking (EST) [11], online boosting tracking (OBT) [12][13], semi-supervised boosting 

tracking (SemiBT) [14], multiple instance learning (MIL) [15], tracking-learning-detection 

(TLD) [16], to name a few. However, this kind of trackers usually achieves not good 

performance in terms of accuracy since the number of collected positive and negative samples 

is limited in the tracking process. 

During the tracking process, tracking methods based on template matching search for a 

most likely image region being of the highest similarity or the smallest distance to the tracked 

object. In 1981, Lucas and Kanade [17] propose an iterative image registration method, which 

is the basis of the optical flow tracking algorithm. In 2003, Comaniciu et al. [7] present a 

kernel-based tracking framework, which exploits a spatial kernel function to measure the 

similarities between the tracked object and candidates and uses the Mean Shift method to 

achieve a fast matching. In 2008, Ross et al. [18] propose an incremental visual tracking (IVT) 

method based on online subspace learning, which learns an incremental principle component 

analysis (PCA) subspace in an online fashion. The IVT method is able to handle the 

illumination variation and pose change due to the PCA assumption, but is sensitive to outliers 

(such as partial occlusion and background clutter). Kwon and Lee [19] adopt a sparse PCA 

method to select multiple color and edge templates, which is robust to many challenging cases 

(such as illumination variation, scale change, pose change, non-rigid motion and so on). 

However, this method is too complex to be applied in real tracking problems.  

Recently, the sparse representation theory has been widely used in the fields of image 

processing and computer vision [20]. Motivated by the success of sparse representation for 

face recognition [21], Mei et al. [22] introduce sparse representation into the tracking filed and 
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propose a L1 tracker, which uses a series of object and trivial templates to sparsely represent 

the tracked object. After that, many researchers improve the original L1 tracker in terms of 

both speed and accuracy. Based on the original L1 tracker, Mei et al. [23] compute a minimum 

error bound of each candidate by using the L2-norm minimization problem and discard those 

candidates with large reconstruction errors, which effectively reduces the number of 

complicated L1-norm minimizations in each frame. Then, Bao et al. [24] introduce an 

accelerate proximal gradient (APG) method to speed up the solution process of the L1-norm 

minimization. Besides, a lot of researchers have also attempted to improve the L1 tracker in 

different aspects, such as considering both positive and negative templates [25], adopting 

different optimization techniques [26], modeling the relationships among different candidates 

[27], combining subspace and sparse representation models [28][29] and so on. 

Inspired by the “template matching”-based trackers (especially the “sparse 

representation”-based ones), this paper presents a novel tracking method based on the 

proposed relaxed inverse sparse representation model. The contributions of this work are 

mainly four folds. First, we treat the tracking problem as an inverse sparse representation 

process and propose a novel objective function to depict this idea. The proposed objective 

function integrates the sparse representation, relaxed representation and weight prior in a 

unified framework. Second, we design an iteration algorithm to effectively solve our objective 

functions based on three propositions. In addition, the proposed representation model is embed 

into a Bayesian inference framework for designing a robust tracker, in which a simple 

template update method is introduced. Finally, many experiments are conducted on some 

challenging image sequences to compare the proposed tracking method with other 

state-of-the-art trackers. The experimental results demonstrate that our tracker achieves good 

performance than other tracking methods.  

The rest of this paper is organized as follows. Section 2 introduces the proposed tracking 

framework with the inverse sparse representation method, including motivation, problem 

formulation, objective function and so on. In Section 4, some experiments are conducted to 

evaluate the proposed tracker and compare it with many state-of-the-art algorithms. Finally, 

Section 5 concludes this paper. 

2. Object Tracking based on Relaxed Inverse Sparse Representation 

2.1 Motivation  
This paper is motivated by the recent success of sparse representation in visual tracking [19] 

and object recognition [27] [28]. The basic idea of the original L1 tracker [19] is that each 

candidate d  can be sparsely represented by a set of object ( T ) and trivial templates ( I ), in 

which the coding coefficient vector can be solved by the following L1 minimization problem, 

i.e.,  

 
2

12
min ,  

x
d T I c c                                                    (1) 

 

in which c is the coding coefficient vector and 
1

. encourage a sparse solution. However, in 

the tracking problem, it requires to maintain many candidates to approximate the probability 

of the object’s state. Thus, it needs to calculate many L1 minimization problems, which will 

make the tracker very slow. In recent, some researchers have studied another line in sparse 

representation, sparsity induced similarity [27]. This research line treats the solution obtained 

by sparse representation as a similarity measurement. From this view, the tracking problem 

can be viewed as an inverse sparse representation process, i.e., representing the template by 
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using a set of candidates rather than coding each candidate by using templates. The core idea 

of the inverse sparse representation process is illustrated in Fig. 1.  

 

y Dx                                                                   (2) 

 

We note that the coefficient vetcor x can be viewed as the similarity degrees between different 

candidates and the object template according to the sparsity induced similarity framework[27]. 

Compared with the original L1 tracker [19], this idea merely sloves  one L1 minination 

problem (i.e., 
2

2 1

1
min ,

2
  

x
y Dx x x 0 ) to determine the likelihood values of different 

candidates. In the tracking process, the target’s appearance may experience some unexpected 

noises or outliers, such as partial occlusion, local illumination variation and so on. However, 

the holistic representation in equation (2) cannot deal with this dilemma. Thus, to alleviate this 

problem, we divide the observation patch (for both object template y  and candidates D into 

M fragments), and then the representation process in equation (2) can be converted into 

M sub-processes m m my D x . But in this fragment scheme, different fragments are treated to 

be of equal importance and therefore cannot make the tracker aviod the effect of outliers.  To 

emphasize the differences of different fragments and avoids the effect of outliers (such as 

partial occlusion), the representation coefficient vectors 
1

M

m m
x should be similar but not same 

[28]. This idea can be described by using the term 
2

2
1

M

m m

m

w


 x x , which x is a weighted 

average vector to make different coefficient vectors be similar and 
1

M

m m
w


are weights of 

different fragments for depicting the differences among coefficient vectors. Based on the 

above-mentioned discussions, we present the objective function of the proposed 

representation model in the next subsection. Based on the proposed model, i.e., the relaxed 

inverse sparse representation, the overall framework of the tracking method is illustrated in 

Fig. 1. 

 

 
Fig. 1. The overall framework of the proposed tracking algorithm. 

 

 

2.2 Problem formulation 
In this work, we cast the tracking problem as a relaxed inverse sparse representation problem, 

the core objective function of which can be defined as  
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w
  
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

   x x w y D x x x x    (3) 

 

where the first term denotes the reconstruction error based on coding coefficient vectors, the 

second term is the L1 regularization term that aims to encourage the coding coefficients being 

sparse, the third term is the relaxed term that measures the consistency (or dis-consistency) 

among different coding coefficient vectors, and the last one is a Kullback–Leibler divergence 

term that makes sure the weight vector w should be more similar a reference weight vector 

w (that is, w  provides a prior on w ), , ,    are parameters to balance different terms.  

    We note that x can be viewed as an overall sparisty induced similarity measure between the 

template y and the candidate dictionary D . The optimal 
*

x can be obtained by optimizing the 

following optimization problem,  

 

 
1

1, ,

min , ,

. . , ,

M

m
i

M

m
i

m

J

s t





  

x x w

x x w

x 0 x 0 w 0

                                                       (4) 

 

    We note that the objective function (3) is a unified framework to combine several key 

components, such as the inverse sparse representation process, the fragment scheme and the 

weight adaptive scheme. The inverse sparse representation process makes the tracker use 

different candidates to sparsely represent the object template, in which the representation 

coefficients can be viewed as the observation likelihood values of those candidates. The 

fragment scheme makes the inverse sparse representation process be in the fragment level 

rather than holistic level, which effectively exploit the differences of different fragments in 

representation process. In addition, the weight adaptive scheme could determine the important 

degrees of different fragments in an online manner. Thus, the combination of these key 

components in a unified objective function is able to benefit obtaining accurate observation 

likelihood during the tracking process. The effectiveness of these components can be 

demonstrated in the experiment section. 

 

2.3 Problem solution 
To the best of our knowledge, there is no closed-from solution for the optimization problem 

(4). So, we propose an iteration algorithm to estimate 
1

M

m m
x , x and w based on the following 

three propositions.  

Proposition 1: Given the optimal solutions
*

x and *
w , the optimal coefficient 

vectors *

1

M

m m
x can be obtained by solving M individual sparse coding problems, which can be 

solved by the LASSO method.  

    If the optimal values
*

x and *
w are given, the minimization of the problem (5) can be 

converted into the following optimization problem,  
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 
1

* 1

1 1
|

| arg min |

. . 0, 1,2,...,

M
m m

M M

m m m m

m

J

s t m M


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 

x
x x

x

                                                   (6) 

 

where the objective function  1

1|Mm mJ x  is defined as  

 

 
2

*21 *

1 2 1
21

|
M

M

m m m m m m m m

m

J w 



    x y D x x x x                           (7) 

 

It is easy to see that the objective function (7) can be viewed as a sum of M individual 

functions, i.e.,    1 1,

1

1

|
M

M m

m m m

m

J J



x x , where  
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2
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2

2
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m
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m m m m
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
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
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    

   
     

     

   

x y D x x x x

y D x x x Ix

y D
x x

Ix

y D x x

              (8) 

 

where    **,
T

T

m m mw  
  

y y x ,    *,

T
T

T

m m mw
 

    
D D I , I is an indentify matrix. From 

equation (7), we can see that the optimization problem (6) can be modified as 

M sub-optimization problems, i.e.,  * 1,arg min , 1,2,...,
m

m

m mJ m M 
x

x x , each of which is a 

standard LASSO problem that can be optimized by using the SPAMS (SPArse Modeling 

Software) package (http://spams-devel.gforge.inria.fr/).  

Proposition 2: Given the optimal solutions *

1

M

m m
x and *

w , the optimal average coefficient 

vector
*

x can be solved by a simple weighted average operator.  

If the optimal values *

1

M

m m
x and *

w  are given, the optimal average coefficient vector can 

be obtained by solving the following problem,  

 

 
* 2arg min J

x
x x                                                          (9) 

 

where the objective function  2J x  is defined as  
2

2 * *

2
1

M

m m

m

J w


 x x x . This problem is 

a standard least squares problem and its closed-from solution can be obtained by setting the 

derivation  2J x x  to zero.  

http://spams-devel.gforge.inria.fr/
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x
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So, the optimal solution of the average coefficient vector can be obtained by 

* * * *

1 1

M M

m m m

m m

w w
 

 x x . Due to the non-negativity of the coefficient vectors *

1

M

m m
x , the optimal 

average vector 
*

x  is also negative.  

Proposition 3: Given the optimal solutions *

1

M

m m
x and

*

x , the optimal weight vector *
w  can 

be obtained by M product operators separately.  

If the optimal values *

1

M

m m
x and

*

x are given, the optimization problem (4) can be 

converted into the minimization problem (11).  

 

 * 3arg min J
w

w w                                                    (11) 

 

in which the objective function    3 3,

1

M
m

m

J J


w w  that is a sum of M sub-equations 

 
2

3,

2
logm m

m m m m

m

w
J w w w

w
   


x x . Thus, the optimal weight vector *

w  can be obtained 

by solving M sub-problems  * 3,argmin , 1,2,...,
m

m

m m
w

w J w j M  . By setting the derivation 

 3,m

m mJ w w  to zero, the optimal value *

mw  can be obtained.  
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m
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Thus, we can obtain
2

** *

2

exp 1m m mw w




 
    

 
x x , the physical meaning of which is very 

intuitive. The former component 
2

**

2

exp 1 m





 
   
 

x x measures the inconsistency between 

the coding coefficient vector *

mx  and the average coding vector
*

x ; and the later one makes 

the solution be similar with the reference weight vector.  
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 Table 1. The iteration algorithm for solving the optimization problem (4) 

Input: The observation patches 
1

M

m m
y , the candidate dictionaries 

1

M

m m
D , the reference 

weight vector w , and the regularization parameters  ,   and  . 

1: Initialize the average coefficient vector 
0

x 0 and weight vector 0 w w  

2: Iterate  

3:  Obtain 
1

M
i

m m
x by solving 

1

2
12 1

2 11 21

arg min
M

m m

M
M ii i

m m m m m m mm
m

w 







    
x

x y D x x x x  

    by using the LASSO method (based on Proposition 1). 

4:  Calculate the average coefficient vector: 1 1

1 1

M M
i i i i

m m m

m m

w w 

 

 x x . 

5:  Update the weight vector:
2

2

exp 1
ii i

m m mw w




 
    

 
x x  . 

6: Until Convergence or termination  

Output: The optimal vectors *

1

M

m m
x , 

*

x and *
w . 

 

By the above-mentioned three propositions, the optimization problem (4) can be solved 

iteratively. The iteration algorithm for solving the optimization problem (4) is presented in 

Table 1. The iteration operations will be terminated when a stopping criterion is met, e.g., the 

difference of the average coefficient vector (
1

2

0.01
i i

 x x ) or a maximal number of 

iteration steps. 

 

2.4 The tracking framework 
Based on the proposed relaxed sparse representation model, we develop a tracking algorithm 

by using the Bayesian inference framework. In general, object tracking can be casted as a 

Bayesian inference problem in a hidden Markov model. Given continuous observation image 

patches  21, ,...,t t dd dD  up to the t -th frame, the aim is to infer the hidden state variable 

t
z recursively, i.e.,  

       1 1 1| | | |t t t t t t t t tp p p p d   z z zz z zdD D                   (13) 

 

where  1|t tp z z  stands for the motion model between two consecutive frames and 

 |t tp d z  is the observation model that estimates the likelihood function for each candidate. 

The overall framework of the tracking method has been illustrated in Fig. 1. Similar to [16], 

the affine transform with six parameters is adopted to depict the motion model  1|t tp z z , in 

which  , , , , ,t t t t t t tx y s  x  denote the ,x y  translations, rotation angle, scale, aspect ratio, 

and skew in the t -th frame. Then the random walk process are adopted to describe the state 

transition, i.e.,    1 1;| ,t t t tp   z ψz z zN , where  2 2 2 2 2 2, , , , ,x y s       ψ is a diagonal 

covariance matrix.  

    In the t -th frame, we solve the following optimization problem,  
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where 
1

M

m m
y denotes the template,  

1 2
, ,...,t t t t

m m m m N
           D d d d stands for the m -th 

sub-dictionary related with N  candidate states, 1 1 1 1

1 2, ,...,t t t t

Mw w w      w  is the weight 

vector of the  1t  -th frame. After solving equation (13) by the iteration algorithm in Table 1, 

the likelihood of each candidate can be measured by    *

| , 1,2,...,i i

t t
i

p i N d z x . Then the 

optimal state *

tz inferred by the Bayesian framework. We also note that the reference weight 

vector is initialized as 
1

, 1,...,i

tw i M
M

  and then is updated frame by frame.  

    During the tracking process, it is necessary to update the template of the tracked object to 

capture the appearance changes. After obtaining the optimal state *
z , we extract its 

corresponding image patch *
d and update the target template in a fragment-based manner, i.e.,  

 
* *

2
(1 ) ,

,

m m m m m

m m

if

otherwise

       




y y d y d

y y
                   (14) 

 

in which 0.95  is a update rate and 0.1   is a predefined threshold.  

3. Experiments 

In this paper, we implement our tracker in the MATLAB platform, which runs 18 frames per 

second on a PC machine with Intel i5-M560 CPU (2.67 GHz) with 2 GB memory. For each 

image sequence, the bounding box of the tracked object is manually labeled in the first frame 

for initializing our tracker. The affine parameters are set to be 

 2 3 3 34,4,1 ,5 ,1 ,1diag e e e e   ψ for sampling candidates in each frame. To model the 

appearance feature of each patch, we firstly resize each patch to 32 32 pixels and then divide 

it into  4 4 16   fragments. 600 particles are used to balance the effectiveness and 

efficiency. The parameter for sparse regularization   is set as 0.1, and other parameters are 

set to be 0.01  and 0.01  . 

    We adopt many challenging video clips to evaluate the proposed tracker in comparison with 

ten recent trackers, including five sparisty-based tracking algorithms (accelerated proximal 

gradient L1 (L1) [21], multitask tracking (MTT) [24], local sparse appearance tracking 

(LSAT) [29], two view sparse represenation (TVSR) [35]) and other six methods 

(fragment-based tracking (Frag) [30], incremental visual tracking (IVT) [15], multiple 

instance learning (MIL) [12], visual tracking decomposition (VTD) [16],  

tracking-learning-detection (TLD) [13] and probability continuous outlier model (PCOM) 

[34]). The challenging factors of these video clips include partial occlusion, illumination 

variation, scale change, pose change, background clutter and so on. Both qualitative and 
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quantitative results are presented as follows.  

3.1 Qualitative Results 

 
Fig. 2. An illustration of selected tracking results of different trackers in partial occlusions. 

 

    Fig. 2 and Fig. 3 provide some qualitative results to compare our tracker with other four 

tracking methods, including two baseline algorithms (IVT and MIL) and two sparse ones (L1 

and MTT). In Fig. 2, our tracker is compared with other tracking methods when partial 

occlusions occur during the tracking process. It can be seen from this figure that our tracker 

performs better than other algorithms in handling these cases due to the fragment-based 

scheme and relaxed sparse representation. The IVT method is very sensitive to partial 

occlusions as its adopted PCA representation model cannot depict outliers (e.g., Occlusion2 

and Caviar1). The MIL method uses the multiple instance learning technique to deal with the 

ambiguity of positive samples, however this algorithm cannot handle the case when the 

tracked object occluded by other objects with similar appearance (e.g., Caviar1 and Caviar2). 

Although the FragT method also uses the fragment-based object representation to handle 

partial occlusions, it performs poorly in more complex conditions (e.g., Occlusion2 and 

Caviar2). Both the L1 and MTT trackers are motivated by sparse representation, which adopts 

a series of trivial templates to model outliers (i.e., partial occlusions) explicitly. But they also 
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achieve not good performance as the traditional sparse representation model cannot effectively 

model the relationships among candidates (e.g., Caviar1 and Caviar2). Besides, Fig. 3 show 

representative results on other five challenging videos. It can be seen from this figure that the 

proposed tracking algorithm achieves good performance in dealing with pose variation 

(DavidIndoor), illumination change (DavidIndoor, Singer1, Car4) and cluttered background 

(Car11 and Deer). In addition, Fig.4 demonstrates the tracking results of different algorithms 

on two challenging image sequences in the PETS dataset 

(http://www-prima.imag.fr/PETS04/index.html). 

 
Fig. 3. An illustration of selected tracking results of different trackers in other conditions. 

http://www-prima.imag.fr/PETS04/index.html
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Fig. 4. An illustration of selected tracking results of different trackers in two challenging sequences 

from the PETS dataset. 

3.2 Quantitative Results 

To evaluate our tracker and other trackers quantitatively, we use two popular criteria, i.e., 

center location error (CLE) and F-meansure (F). The center location error is defined as the 

Euclidean distance between the center location of the ground truth and the center location 

obtained by a tracker. It is obvious that a good tracker intends to obtain small CE values in the 

test sequences. However, this rule does not consider scale and rotation changes. In addition, 

we also adopt the F-meansure (F) [5] to further evaluate different trackers (the F rule is defined 

in equation (15)).  

   

   

2 , ,

, ,

T G T G

T G T G

Pr R R Re R R
F

Pr R R Re R R

 



                                     (15) 

in which GR  and TR  are ground truth and the tracked bounding boxes respectively, 

     ,T G T G GPr R R area R R area R ,      ,T G T G TRe R R area R R area R , and 

 area X denotes the area of the region X . Table 2 and Table 3 report the average CLE and 

F values for different tracking algorithms on the test image sequences, from which we can see 

that the proposed RISR tracking method achieves better performance than other 

state-of-the-art trackers.  
 

Table 2. Average center location errors (ACLE) of different trackers.  
    Method 

 

Video 

FragT 

[30] 

IVT 

[15] 

MIL 

[12] 

VTD 

[16] 

TLD 

[13] 

L1 

[21] 

LAST 

[29] 

MTT 

[24] 

PCOM 

[34] 

TVSR 

[35] 

RISR 

(Ours) 

FaceOcc1 5.6 9.2 32.3 11.1 17.6 6.8 5.3 14.1 5.9 4.4 3.2 

FaceOcc2 15.5 10.2 14.1 10.4 18.6 6.3 58.6 9.2 4.0 5.3 4.8 

Caviar1 5.7 45.2 48.5 3.9 5.6 50.1 1.8 20.9 1.4 1.5 0.9 

Caviar2 5.6 8.6 70.3 4.7 8.5 63.1 45.6 65.4 1.8 2.8 2.5 

DavidIndoor 76.7 3.6 16.1 13.6 9.7 14.3 4.9 124.0 3.8 3.1 5.0 

Singer1 22.0 8.5 15.2 4.1 32.7 3.1 14.5 41.2 5.2 3.4 3.7 

Car4 179.8 2.9 60.1 12.3 18.8 16.4 3.3 37.2 4.6 7.3 3.5 

Car11 63.9 2.1 43.5 27.1 25.1 1.7 4.1 1.8 2.2 3.1 1.8 

Deer 92.1 127.5 66.5 11.9 25.7 38.4 69.8 9.2 13.9 25.8 10.0 
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Pets1 11.4 1.9 3.3 2.9 9.9 2.2 22.0 3.7 2.2 2.5 2.0 

Pest2 54.8 6.0 15.4 18.6 13.2 60.7 34.9 9.8 8.4 6.2 5.8 

Average 48.5 20.5 35.0 11.0 16.9 23.9 24.1 30.6 4.9 5.9 3.9 

 

Table 3. Average overlap rates (AOR) of different trackers. 
    Method 

Video 
FragT 

[30] 

IVT 

[15] 

MIL 

[12] 

VTD 

[16] 

TLD 

[13] 

L1 

[21] 

LAST 

[29] 

MTT 

[24] 

PCOM 

[34] 

TVSR 

[35] 

RISR 

(Ours) 

FaceOcc1 0.95   0.91 0.73 0.87 0.77 0.93 0.95 0.88 0.92 0.92 0.95 

FaceOcc2 0.74 0.69 0.75 0.71 0.63 0.82 0.39 0.83 0.85 0.80 0.83 

Caviar1 0.80 0.29 0.28 0.91   0.82 0.30 0.92 0.55 0.92 0.91 0.93 

Caviar2 0.70 0.58 0.32 0.79 0.78 0.36 0.34 0.38 0.78 0.84 0.87 

DavidIndoor 0.27   0.82 0.61 0.68 0.74 0.69 0.76 0.33 0.82 0.88 0.87 

Singer1 0.46 0.79 0.46 0.88 0.54 0.91 0.64 0.43 0.75 0.78 0.91 

Car4 0.28     0.96 0.45 0.84 0.77 0.82 0.95 0.67 0.84 0.88 0.95 

Car11 0.11 0.89 0.24 0.50 0.48 0.91 0.65 0.73 0.82 0.86 0.89 

Deer 0.11 0.26 0.30 0.72 0.50 0.57 0.45 0.74 0.59 0.35 0.77 

Pets1 0.55 0.75 0.56 0.71 0.57 0.68 0.39 0.77 0.76 0.74 0.78 

Pets2 0.10 0.76 0.49 0.51 0.60 0.38 0.49 0.62 0.65 0.72 0.75 

Average 0.46 0.70 0.47 0.74 0.66 0.67 0.63 0.63 0.79 0.78 0.86 

3.3 The effects of parameters and components 

In this subsection, we investigate the effects of two critical parameters, the sparsity 

regularization parameter   and the fragment number M . First, the choice of parameter  is a 

critical parameter that controls the sparsity level. Fig. 5 (a) demonstrates the tracking 

performance (i.e., F-measure) with different   values. If   is too small, the solution will be 

too trivial and not sparse, which will introduce too much noise in inferring the similarities of 

different candidates. On the other hand, if   is too large, the sparisty will be over-emphasized, 

which may lead to select a very small number of candidates. Thus, the tracking performance is 

also not good. Second, the number of fragments is also very important to our tracker (the 

performance of different fragments is shown in Fig. 5 (b)). If the fragment number is very 

small, the tracker cannot achieve good performance as it is not able to model outliers (such as 

partial occlusions or local illumination changes) effectively by using a very small number of 

fragments. For another, if the fragment number is too large, the size of each fragment will be 

too small to capture sufficient visual information, which will also leads the tracker’s 

performance is not satisfying. Based on the reported results in Fig. 5, we set 0.1  and 

16M  as default values in this work.  

 
 

Fig. 5. The effects of critical parameters. 
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In addition, Fig. 6 show the effects of different components, in which L1 denotes the 

original L1 tracker [21], ISR denotes the tracking method based on inverse sparse 

representation process without using the fragment scheme, FISR is the fragment-based ISR 

tracker, and RISR indicates the final tracking method that combines the inverse sparse 

representation, fragment scheme and adaptive weight scheme within a unified framework. 

From this figure, we can see that both fragment and adaptive weight schemes facilitate the 

improvements of tracking  performance.  

 
Fig. 6. The effects of different components. 

4. Conclusion 

In this work, we develop a novel online object tracking algorithm based on our relaxed inverse 

sparse representation algorithm. First, we treat the tracking problem as an inverse sparse 

representation process, in which a given template of the tracked object can be sparsely 

represented by the candidate samples in each frame. In addition, we introduce a relaxed 

constraint term to make the inverse sparse representation process be more flexible and a 

weight prior as a reference of the relaxed term. Then, a novel tracking method is designed 

based on the proposed representation model and a simple online update manner within the 

Bayesian framework. Last but not least, we conduct many experiments to compare our tracker 

with other recent trackers. The results show that our tracker performs better than other 

compared tracking algorithms.  

References 

[1] Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang and Zhan Song, “Recent advances and 

trends in visual tracking: A review,” Neurocomputing, vol.74, no.18, pp.3823-3831, November , 

2011.  Article (CrossRef Link) 

[2] Xi Li, Weiming Hu, Chunhua Shen, Zhongfei Zhang, Anthony R. Dick and Anton van den Hengel, 

“A survey of appearance models in visual object tracking,” ACM Transactions on Intelligent 

Systems and Technology s, vol. 4, no. 4, pp. 58, December, 2013.  Article (CrossRef Link) 

[3] Michael D. Breitenstein, Fabian Reichlin and Bastian Leibe, “Online multiperson 

tracking-by-detection from a single, uncalibrated camera,” IEEE Transcations on Pattern Analysis 

and Machine Intellignece, vol. 23, no. 9, pp. 1820-1833, Septermber, 2011.  

Article (CrossRef Link) 

[4] Weizhi Nie, Anan Liu, Yuting Su, Huanbo Luan, Zhaoxuan Yang,  Liujuan Cao and Rongrong Ji, 

“Single/cross-camera multiple-person tracking by graph matchin,g,” Neurocomputing ,vol. 139,  

http://dx.doi.org/doi:10.1016/j.neucom.2011.07.024
http://dx.doi.org/doi:10.1145/2508037.2508039
http://dx.doi.org/doi:10.1109/TPAMI.2010.232


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 9, September 2015                            3669 

pp. 220-232, September, 2014. Article (CrossRef Link) 

[5] Yue Gao, Rongrong Ji, Longfei Zhang and Alexander Hauptmann, “Symbiotic tracker ensemble 

toward a unified tracking framework,” IEEE Transcations on Circulits and Systems for Video 

Technology, vol. 24, no. 7, July,  2014. Article (CrossRef Link) 

[6] Yi Wu, Jongwoo Lim and Ming-Hsuan Yang, “Online object tracking: a benchmark,” in 

Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2013, June 

23-28, 2013. Article (CrossRef Link) 
[7] Dorin Comaniciu, Visvanathan Ramesh and Peter Meer, “Kernel-based object tracking,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol.25, no.5, pp.564-575, May, 2003. 

Article (CrossRef Link) 
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