• Title/Summary/Keyword: Inverse Algorithm

Search Result 962, Processing Time 0.023 seconds

EFFICIENT ALGORITHM FOR FINDING THE INVERSE AND THE GROUP INVERSE OF FLS $\gamma-CIRCULANT$ MATRIX

  • JIANG ZHAO-LIN;XU ZONG-BEN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.45-57
    • /
    • 2005
  • An efficient algorithm for finding the inverse and the group inverse of the FLS $\gamma-circulant$ matrix is presented by Euclidean algorithm. Extension is made to compute the inverse of the FLS $\gamma-retrocirculant$ matrix by using the relationship between an FLS $\gamma-circulant$ matrix and an FLS $\gamma-retrocirculant$ matrix. Finally, some examples are given.

Analytical Inverse Kinematics Algorithm for a 7 DOF Anthropomorphic Robot Arm Using Intuitive Elbow Direction (7자유도 인간형 로봇 팔의 직관적인 팔꿈치 위치 설정이 가능한 역기구학 알고리즘)

  • Kim, Young-Loul;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Control and trajectory generation of a 7 DOF anthropomorphic robot arm suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose an analytical inverse kinematics algorithm for a 7 DOF anthropomorphic robot arm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning using this algorithm provides correct results near the singular points and can utilize redundancy intuitively.

Inverse Kinematics of Complex Chain Robotic Mechanism Using Ralative Coordinates (상대좌표를 이용한 복합연쇄 로봇기구의 역기구학)

  • Kim, Chang-Bu;Kim, Hyo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3398-3407
    • /
    • 1996
  • In this paper, we derive an algorithm and develope a computer program which analyze rapidly and precisely the inverse kinematics of robotic mechanism with spatial complex chain structure based on the relative coordinates. We represent the inverse kinematic problem as an optimization problem with the kinematic constraint equations. The inverse kinematic analysis algorithm, therefore, consists of two algorithms, the main, an optimization algorithm finding the motion of independent joints from that of an end-effector and the sub, a forward kinematic analysis algorithm computing the motion of dependent joints. We accomplish simulations for the investigation upon the accuracy and efficiency of the algorithm.

A Study on Constructing the Inverse Element Generator over GF(3m)

  • Park, Chun-Myoung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.317-322
    • /
    • 2010
  • This paper presents an algorithm generating inverse element over finite fields GF($3^m$), and constructing method of inverse element generator based on inverse element generating algorithm. An inverse computing method of an element over GF($3^m$) which corresponds to a polynomial over GF($3^m$) with order less than equal to m-1. Here, the computation is based on multiplication, square and cube method derived from the mathematics properties over finite fields.

PARAMETER IDENTIFICATION FOR NONLINEAR VISCOELASTIC ROD USING MINIMAL DATA

  • Kim, Shi-Nuk
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.461-470
    • /
    • 2007
  • Parameter identification is studied in viscoelastic rods by solving an inverse problem numerically. The material properties of the rod, which appear in the constitutive relations, are recovered by optimizing an objective function constructed from reference strain data. The resulting inverse algorithm consists of an optimization algorithm coupled with a corresponding direct algorithm that computes the strain fields given a set of material properties. Numerical results are presented for two model inverse problems; (i)the effect of noise in the reference strain fields (ii) the effect of minimal reference data in space and/or time data.

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1131-1141
    • /
    • 2010
  • We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner.

Note on the Inverse Metric Traveling Salesman Problem Against the Minimum Spanning Tree Algorithm

  • Chung, Yerim
    • Management Science and Financial Engineering
    • /
    • v.20 no.1
    • /
    • pp.17-19
    • /
    • 2014
  • In this paper, we consider an interesting variant of the inverse minimum traveling salesman problem. Given an instance (G, w) of the minimum traveling salesman problem defined on a metric space, we fix a specified Hamiltonian cycle $HC_0$. The task is then to adjust the edge cost vector w to w' so that the new cost vector w' satisfies the triangle inequality condition and $HC_0$ can be returned by the minimum spanning tree algorithm in the TSP-instance defined with w'. The objective is to minimize the total deviation between the original and the new cost vectors with respect to the $L_1$-norm. We call this problem the inverse metric traveling salesman problem against the minimum spanning tree algorithm and show that it is closely related to the inverse metric spanning tree problem.

A Study on a Hybrid Genetic Algorithm for the Analysis of Inverse Radiation (역복사 해석을 위한 혼합형 유전 알고리듬에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Kim, Man-Young;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1516-1523
    • /
    • 2003
  • An inverse radiation analysis is presented for the estimation of the boundary emissivities for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. The finite-volume method is employed to solve the radiative transfer equation for a two-dimensional irregular geometry. A hybrid genetic algorithm is proposed for improving the efficiency of the genetic algorithm and reducing the effects of genetic parameters on the performance of the genetic algorithm. After verifying the performance of the proposed hybrid genetic algorithm, it is applied to inverse radiation analysis in estimating the wall emissivities in a two-dimensional irregular medium when the measured temperatures are given at only four data positions. The effect of measurement errors on the estimation accuracy is examined.

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.

INVERSE CONSTRAINED MINIMUM SPANNING TREE PROBLEM UNDER HAMMING DISTANCE

  • Jiao, Li;Tang, Heng-Young
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.283-293
    • /
    • 2010
  • In this paper, inverse constrained minimum spanning tree problem under Hamming distance. Such an inverse problem is to modify the weights with bound constrains so that a given feasible solution becomes an optimal solution, and the deviation of the weights, measured by the weighted Hamming distance, is minimum. We present a strongly polynomial time algorithm to solve the inverse constrained minimum spanning tree problem under Hamming distance.