J. Appl. Math. & Informatics Vol. 28(2010), No. 1 - 2, pp. 283 - 293
Website: http://www.kcam.biz

INVERSE CONSTRAINED MINIMUM SPANNING TREE
PROBLEM UNDER HAMMING DISTANCE

LI JIAO* AND HENGYOUNG TANG

ABSTRACT. In this paper, inverse constrained minimum spanning tree prob-
lem under Hamming distance. Such an inverse problem is to modify the
weights with bound constrains so that a given feasible solution becomes
an optimal solution, and the deviation of the weights, measured by the
weighted Hamming distance, is minimum. We present a strongly polyno-
mial time algorithm to solve the inverse constrained minimum spanning
tree problem under Hamming distance.

AMS Mathematics Subject Classification : 90D10, 90C27

Key words and phrases : Spanning tree, inverse problem, polynomial algo-
rithm.

1. Introduction

The inverse optimization problems have attracted increasing interest in recent
years. The research was motivated by its background in traffic planning, and
people have found more and more applications, such as high speed communica-
tion, computerized tomography, conjoint analysis, behavioral decision making,
geophysical science, performance evaluation, etc. (For example, see [5,6,7]). In
an inverse optimization problem, a candidate solution is given and goal is to
modify parameters of the original problem so that the given solution becomes
an optimal one under the new parameters and simultaneously minimize the costs
incurred by the modification of parameters[4].

Before we introduce the inverse problem, we first present constrained mini-
mum spanning tree problem. Let G = (V, E) be a connected undirected network
consisting of the node set V and the edge set E. Let n = |V| and m = |E|.
We assume that V = {1,2,--- ,n}, F = {e1,e2, -+ ,em}. Each edge e; has an
associated edge cost ¢; > 0 and associated weight w; > 0, let ¢ = {¢1, 2, -+, &)
denote the edge cost vector and w = (wWy, W, -+ , Wy,) denote the edge weight
vector. We call spanning tree T a feasible solation and let 7 be the set of all

Received September 29, 2008. October 14, 2009. Accepted October 28, 2009. *Corresponding
authors.
© 2010 Korean SIGCAM and KSCAM .
283

284

feasible solutions. For any a spanning tree T' € T, let g(F,w) = maxe,er W(e)
and f(F,w) =3 . .1 w(e). The constrained minimum spanning tree problem is
to find a feasible solution that minimizes f(F,w) subject to a bound constraint
on g(F,w), which is mathematically formulated as follows:

i . <B.
min f(F,w) st g(F,w)<B

If G becomes disconnected after deleting the edges whose weights are not less
than B, then the constrained minimum spanning tree problem is infeasible. If
G becomes connected after deleting the edges whose weights are not less than
B, then we can obtain the minimum spanning tree by Kruskal’s algorithm[9]. It
is clear that its time complexity is O(mn).

The constrained minimum spanning tree problem have a big application po-
tential. For example, in traffic network, the distance between the gas stations
should not surpass the fixed distance, otherwise, the automobiles cannot be re-
fueled and which make them could not drive; in the information network, the
distance between the signal towers should not surpass the fixed distance, other-
wise, the signal cannot cover the entire area.

In this paper, firstly, we consider inverse constrained minimum spanning
tree problem under Hamming distance, which can be described as follows: Let
G = (V, E) be a connected undirected network consisting of the node set V and
the edge set E. Let n = |V| and m = |E|. We assume that V = {1,2,---,n},
E = {e1,e2, - ,en}. Each edge e; has an associated edge cost ¢; > 0 and
associated weight w; > 0.~ Let b—,bT > 0 be two bound vectors and ¢ be cost
vector defined on E. Let T be a spanning tree of G. We look for an edge weight
vector w = (w1, wa, - - - Wy,) such that

(1) T ia the minimum weight spanning tree with respect to w;

(2) For each e; € E, w; — b; <w; < @; +b];

(3) For each e; € T, g(F,w) < B;

(4) 3°, ¢ H(Ws, w;) is minimized, where H (;, w;) is the Hamming distance
between w; and w;, i.e.,H(W;, w;) = 0 if W; = w; and 1 otherwise. Mathemati-
cally, it can be formulated as the the following problem:

m
min ZCiH(iBiywi)
i=1

s.t Zeie% wiSZeieTwi vVTeT
7 wi<B (1)
Wi —b <w; <W;+b VY e €E.

max
€

2. Solving the inverse constrained minimum spanning tree problem
under Hamming distance.

In this section, we propose a general method to solve the inverse constrained
minimum spanning tree problem and give a strongly polynomial time algorithm.

Inverse constrained minimum spanning tree problem 285

Before we start the main part, we list some useful notations: for given span-
ning tree 7', we refer to the edge set consisting of edges in T" as tree edge set,
and the set of other edges as nontree edge set. For each e; € E\T, TU {e;}
contains a unique cycle, denote by P; the edge set consisting of all edges in this
cycle except e;.

Firstly, we should consider B and the bounds on the modifications of weights,
let bppgy = max{w; — b |e; € T},

Case 1: B < by Case 2: B > bpas;

If B < byae, then the modification of the weights aren’t in the interval [w; —~
b, ,w; + b] for e; € T. So the inverse constrained minimum spanning tree
problem is infeasible. .

If B > byye, then let j’; = {ez € T!@z > B}. Clearly, for each edge e; € Tj,
we need to reduce the weight w; to B in order to make the maximum welght

onT equal to B. If T is a minimum spanning tree under weight vector w? also
holds, then

(2)

wlB:B, \V/Eiej—g
wZBZ’l’Ei, Y €¢EE\TB

is obviously the optimal solution to the inverse constrained minimum spanning
tree problem. Then the cost incurred by modifications is

C(B) = Y eH(iw,wp).
E-LE%;

Otherwise, let B; = min{B,w; + b} }, (1) can be reformulated as follows:

m
min Z C@H(ﬁ)}', wz)
i=1

st Zele’f wl<ZeieTwi v TeT
w; —b; < w; < By VY e, €T (3)
W — b7 <w; < T +b7 Ve € E\T

It is well known [1] that T is a minimum spanning tree with respect to the
edge weight vector w if and only if it satisfies the following optimality conditions:
w; < w; foreach e; € E\ T and e € P Tt implies that the new weight vector
w should satisfy that a; = [w; —w;| for i = 1,2,---,m, where w; = w; + o for
each e; € E\ T, and w; = W; — o if e; € P; for at least one ¢; € E\T.

Taking the bounds on the modifications of weights into consideration, because
lflji—bi‘ <w; < B; (ei € T), —b, < w;—w; < B —w; (61' S T), then lwi—ﬁ;iLS
min(b;, B; —@;) = I; (e; € T) and because @; —b; < w; < @;+b; (e; € E\T),

286

—b, <w;,—w; < bf (e; € E\T), then |w; —w;| < min(b] ,bZ) =u; (e; € E\T)~
Hence (2) can be reformulated as follows:

iciH(ai,O)
i=1

st W —a;<@;j+a; for each e; € E\T and e € P,
0<a; <l VeeT (4)
0<a; <y VejEE\f

If w; < w; is valid for some e; € P;, then the constraint w; — a; < w; + ¢ in
(4) is also satisfied for any 0 < o; < 1;,0 < o; < u;. Hence we can delete this
inequality in constraints of (4). By setting P]{ = {e; | &, € P; and w; > w,},(3)
is equivalent to the problem as follows:

iciH(ai,O)
i=1

st Wi—a;<W;j+a; for each e; € E\T and ¢ EP;
0<a;i <l VeeT (5)
0<a; <u, V e; € E\T

To get an polynomial algorlthm for solving (5), we construct a bipartite graph
G’ with respect to the tree T and find the mlmmum—cost node cover problem for
the bipartite graph. In fact, the bipartite graph G =(N,A) = (N1 U NQ, A)
can be obtained as follows: The node set N' = N, U N, satisfies N, = =T and
N2 =E\ T, i.e. each edge of E corresponds to a node of G', and the edge set A
is obtained by considering each nontree edge e; one by one and adding the edge
(e, e;) to A for each e; € P that is, 4 = {(el,e])lej € E\T and ¢ € P +
We further define the cost of each node ¢; of G as ¢;.

‘We now describe the approach for finding a minimum-cost node cover in the
bipartite graph G'. The argument of the minimum-cost node cover problem
is similar to the argument of the minimum-weight node cover problem. The
minimum-weight node cover problem restricted to a bipartite graph is strongly
polynomially solvable via a reduction to the maximum flow problem [2,3]. The
reduction works by constructing a directed network from G’ as follows: Introduce
a source s into G with an arc going to each node in N{ of capacity equal to
the cost of that node, introduce a sink ¢ with an arc coming in from each node
in Né of capacity equal to the cost of that node. Similarly, direct each arc in
A from N{ to N2, and make its capacity +oc0. Denote G the resulting network.
The minimum (s, £)-cut in G can be obtained via a maximum flow computation.
Moreover, the minimum cut must be finite because the net flow out of the source

Inverse constrained minimum spanning tree problem 287

is finite. Hence no edge in A belong to that cut. Let
K = {ejle; # s,t, and €; is a node of the edge in the minimum(s, t) — cut, }

then K is a node cover for G and the capacity of the cut is exactly equal to the
cost of this node cover. On the other hand, it is not difficult to see that any node
cover implies a cut of capacity equal to the cost of the node cover. Therefore,
the node cover determined by the minimum (s, ¢)-cut must be a minimum-cost
node cover.

Theorem 1. Problem (5) has a feasible solution if and only if for each (e;, e;) €
A, we have w; — w; < l; + u;.

Proof. (Necessity) Suppose o = (a1, o, - - - ,) is feasible solution for (5) and
there exists an edge (e;,,e;,) € A, such that w;, — w;, > l;; + uj,. However,
from the feasibility of «, we have w;, — oy, < Wy, + aj,, 0 < oy, < ;, and
0 < aj, < wuy,. Hence we get w;, —w;, < ey, +aj, <l +uj,. A contradiction.

(Sufficiency) Suppose for each (e;, ;) € A, we have w; — w; < I; + u;. Then
set a = (o1, @9, + , Q) satisfying:

o — {; for CiET
) wy for e, € E\T

It is easy to check that « is a feasible solution for (5)

According to Theorem 1, we first find all edges in G which must be changed
in any feasible solution. Let

D = {e; | a; # 0 in every feasible solution o = (a1, 2, + ,) }-

We then solve (4) by computing the minimum-cost node cover of the bipartite
graph G~ which is obtained by deleting D and all edges incident to the nodes
of D.

Firstly, we consider how to determine D. Three cases are considered as fol-
lows:

Case 1*: If there exists an edge (e;,,e;,) € A such that max{l; ,u;} <
wi, —wj, <l +uy,, then we conclude that e;, € D and e;, € D. In fact, assume
that e;, ¢ D, then there must exist a feasible solution o/ = (o], a;, o a,) for
(5) such that 0‘;1 = 0. It follows that 0‘;1 + a;l = a}l < wj, < Wy — Wj,, which
contradicts the feasibility of a’. The same argument can show e;, € D.

Case 2*: If there exists an edge (e;,,ej,) € A such that min{l;,,u;,} <
Wi, — Wy, < max{ly,,u;,}, then we have that e;, € D if [;, > u;, and e;, € D.
Otherwise, it can be shown in the same way as Case 1*.

Case 37 If there exists an edge (e;,,€e;,) € A such that 0 < @, — W;, <
min{l;,, uj, }, then by setting

l; ife # €, and e; € T

;=4 u; ife; € ENT
0 ifei:eis

288

We can show that o = (a1, a2, -+, a,,) is a feasible solution of (5). For this
solution, we have a;, = 0, hence we cannot deduce that e;; € D at this moment.
Similarly, by setting

, l; if e ET
a; =9 u; if e;#ej, and e; € E\T
0 1fez = €j3

We know that o' = (a,ap, -+ ,a.,) is a feasible solution of (5), too. For this
solution, we have a;-3 = 0, hence we cannot deduce that e;, € D.

We further normalize the bipartite graph G’ in the following way: check
every edge (e;, e;) in G’ whether the above Cases 1* and 2* occur. If yes,
modify D (add e; or e; or both to D) and delete the edge (e;,e;) from G .
After this, for each e; € D, delete all edges in G which are incident to the
node e;. Denote by G~ = (N{ U Ny, Al) the resulting bipartite network, where
A" = {(ei,e;) | (ei,e;) €A, e; ¢ D and e; ¢ D}, N, and N, are unchanged.
With the above analysis, each node in D is isolated in G and every minimum-
cost node cover for G dose not contain any node in D.

Theorem 2. Suppose the problem (5) has feasible solutions, Let K' be the
minimume-cost node cover for G’ and a = (1, Qg, -,) satisfy

L if e (K UD)NT
=4 u if (K UDYN(E\T)
0 otherwise

then a is an optimal solution for (5) with value C(K U D).

Proof. We first show that « is a feasible solution. The last two groups of
constraints in (5) hold obviously. We now prove that the first group of constrains
holds for each e; € E\T and e; € P; by the following four mutually exclusive
and collectively exhaustive cases.

Case 1. ¢; € K’ UD,e; € K'UD. In this case, we have that w; —o; = w; —1;
and w; + o = w; + u;. From Theorem 1, we know @; — w; < l; + uj, i.e.,
ﬁi—ai S ’lIZj‘l'ij.

Case 2. ¢, € K UD, e; ¢ K UD. In this case, we have that w; —a; = w; —[;
and w; + o = w;. If further e; € D, then @; — w; < max{l;,u;} = I, which
follows w; —o; < Wj+oy;. Otherwise e; € K', we know W —wW; < min{l;, u;} <.
It follows w; — a; < W; + ¢, too.

Case 3. e; € K UD, e; ¢ K' UD. The arguments are similar to Case 2..

Case 4. e; ¢ K ' UD,e; ¢ K "UD. We show that this case is impossible. If this
case occurs, from e; ¢ D and e; ¢ D, we know that (e;,e;) € A Bute ¢ K
and e; ¢ K " imply that (ei, €;) can not be covered by K ". A contradiction.

Therefore we conclude that « defined above is a feasible solution for prob-
lem(5) and the objective value yielded by « is equal to >, . ¢ + Zeje K’ Cj-

Inverse constrained minimum spanning tree problem 289

Let o = (o), - ,a,) be an arbitrary feasible solution for (5). From the
construction of D, we know that if e¢; € D, then a; #0. Let Y = {e, | a; #0
and e, ¢ D} we claim that Y is a node cover for G". In fact, if there exists
(es,e;) € A such that e ¢y and e; €Y, then @; — w; > 0. On the other hand,
the constraint w; — a <w;+ a is satisfied because o = (al, a2, Lo) is a
feasible solution for (4}. e; ¢ YV and e; €Y imply o; =0 and o ; = 0. Hence we
bave w; < w;, which contradicts to w; — w; > 0. Therefore Y is a node cover
for G”, and the objective value yielded by o’ is equal to YeenCit Zejey cj.

. I "
Because K is the minimum-cost node cover for G, we have

Z ci=ch ch Zcﬁ-ch

e;c DUK' e; €D e;eK’ e;€D e;€Y

Therefore we conclude that o defined above is an optimal solution for (5) and
the objective value yielded by « is equal to C'(KX U D).

According to the above discuss, we get the following algorithm to solve the
discussed problem.

Algorithm Aq:

Step 1. For each e; € ’E;e, reduce the weight w; to B. If T is a minimum
spanning tree under weight vector w”, then stop; (2) is the optimal solution,
the modified cost is C(B). Otherwise, go to Step 2.

Step 2. Construct a bipartite graph G = (T U (E \ T), A) where A =
{(es, e5)le; € E\T, and ¢; € P;} and define the cost of each node ¢; to be ¢;.

Step 3. 1If there exists some (e;, e;) € A, such that w; — w; > li + uy, then
the problem has no feasible solution and stop. Otherwise go to Step 4.

Step 4. Compute G" and D by normalizing G

Step 5. Construct a directed network ¢ from G”, find its minimum (s, t)-
cut, and transform it to a minimum-cost node cover K "for G”.

Step 6. Output an optimal solution o = (1, &g, - -+, Cuy) where « is speci-
fied is Theorem 2, the minimum modified cost is: C(B) + C(K "U D).

Theorem 3. The inverse constrained minimum spanning tree problem under
Hamming distance can be solved, its time complexity is O(n’m) .

Proof. ¥From Theorem 2, we know that the algorithm is right. So, the inverse
constrained minimum spanning tree problem under Hamming distance can be
solved. We next study the time complexity of algorithm, it is clear that Steps

1,2,3,4 and 6 all take O{mn) time. The main task is Step 5 (construct a directed
network G), Step 5 is to compute the maximum flow in the bipartite network G ,
since [N;| = n—1 and |Ny| = m —n+ 1, this step takes O(r®m) time[1]. Hence
the algorithm runs in O(n®m) in the worst-cast and is a strongly polynomial
algorithm.

290

3. Solving the inverse constrained minimum spanning tree problem
under the bottleneck-type Hamming distance

Nextly, we consider inverse constrained minimum spanning tree problem un-
der the bottleneck-type Hamming distance, which can be described as follows:
Let G = (V, F) be a connected undirected network consisting of the node set
V ={1,2,---,n} and the edge set £ = {e1,es, - ,en}. Each edge e; has is
associated with a weight w; > 0 and a cost ¢; > 0 for modifying the weight. Let
W = (w1, Wa, - -+ , Wy,) denote the weight vector and ¢ = (c1,¢2,+ -+, m) denote
the cost vector. Let b~,bT > 0 be two bound vectors defined on E. Let T be
a spanning tree of G. We look for an edge weight vector w = (wy, wa, - - Wm,)
such that

(1) T ia the minimum weight spanning tree with respect to w;

(2) For each e; € E, w; — b; < w; < W; + b7

(3) For each ¢; € T, g(F,w) < B;

(4) The maximum modification cost among all edges, i.e., max{c; H(W;, w;) i =
1,2,---,m} is minimized.

The model can be formulated as followings :

min ~ max ¢H(W;,w;)
1=1,2,---,m

8.t Zeie? w; <Y erwi VTET

max, .z Wi <B (6)

’[Ei—bi Swlgﬁl—l-b:“ Y e € FE.

Similarly, we should consider B and the bounds on the modifications of

weights,too. Let byq, = max{w; — b; |e; € CZ~“},
Case 1: B < byaq; Case 2: B > by

If B < bpgg, then the modification of the weights aren’t in the interval [w; —
by, w; + bf] for e; € T. So the inverse constrained minimum spanning tree
problem is infeasible.

If B > bpas, then let j:]; = {el € Tlfﬁz > B}. Clearly, for each edge e; € ﬁ;,
we need to reduce the weight w; to B in order to make the maximum welght

onT equal to B. If T is a minimum spanning tree under weight vector w? also
holds, then

wB=B, V e; € Ty (1)
wf=wi, VY e, € E\Tp

is obviously the optimal solution to the inverse constrained minimum spanning
tree problem. Then the cost incurred by modifications is

C'(B):= max ciH (W;, w?).

i=1,2,-,m

Inverse constrained minimum spanning tree problem 291

Otherwise, let B; = min{B, w; + b; }, (6) can be reformulated as follows:

min max ¢ H (W, w;)
i=1,2,--,m

s.t Ze»é% wigzeieTwi VYV TeT
ilv)l—bl_ngSBl VeiGT (8)

@i_bi_ gwlgﬁﬁ—bj' YV e EE\f
According to the discussion of the section 2, (8) is equivalent to the problem as
follows:

min max ¢;H(oy,0)
1=1,2,---,m

st w;—o; <Wj+a; for each e eE\T and eiEP;
0<a; <4; VeeT 9)
OSCYJ'SUJ' VEJ'EE\T

To obtain an polynomial algorithm for solving (9), we still construct a bipar-
tite graph G' = (N, A) = (TU (E\T), A) with respect to the tree T as follows:
The node set N =T U (E\T), i.e. each edge of E corresponds to a node of G,
on the left side of G'if the edge is in T, on the right side otherwise, and the edge
set A = {(e,e;)le; € (E\T) and e; € PJI} We further define the cost of each
node e; of G as G-

Noting that problems (5) and (9) have the same constraints, and as shown in
section 2,we conclude that they have a feasible solution if and only if for each
(ei,ej) € A, we have w; — @j <+ Uj-

In order to solve (9), we first need to find the nodes in G whose weights must
be changed in every feasible solution.

Denote by D = {e; | a; # 0 in every feasible solution & = (a1, a2, - , @)}
the nodes which weights must be changed in every feasible solution. Section
2 tells us how to determine D: Suppose problem (9) is feasible, (i) For each
e; €T, ¢; € D if and only if there exists e; € (E\T) such that (e;, e;) € A and
W; —W; > uj. (i) For each e; € (E\T), e; € D if and only if there exists ¢; € T
such that (e;,e;) € A and w; — w; > I,.

With the above analysis, we further normalize the bipartite graph G’ in the
following way: We start with D = (). Check every edge (e;,e;) in G to see
whether the condition in one of the above Cases 1 and 2 satisfies. If yes, modify
D(add e; or e; or both to D) and delete the edge (e;, e;) from G'. After this
process, for each e; € D, delete all edges in G’ which are incident to the node
e; as well as the node e; itself. In this way, we reduce G to G”7 where G =
((T\D) U (T\D), A") and A" = {(e;, ¢;)|(e;,¢;) € A, e ¢ D and ¢; ¢ D}.

Theorem 4. Suppose the problem (9) has a feasible solution. Let K™ be a
minemum bottleneck-cost node cover of G, i.e., K* is a node cover of G such

292

that Co(K*) = min{Cy(K)|K is a node cover of G }, where Cy(K) is the
mazimum cost of the element in K. Define o = (a1, @2, -+ , Q) aS

L if e;e(K*UD)NT,
ai=1{ u; if e e(K*UD)n(E\TD),
0 if e; ¢ (K*UD),

then o is an optimal solution of problem (9) with the minimum objective value
C(K*u D).

Proof. As shown in section 2, if K* is a minimum sum-cost node cover of G”,
then « defined in the theorem is the optimal solution of problem (9). Noting
again that problems (5) and (9) have the same feasible solutions, hence by a
similar argument we can obtain the result.

We now describe an approach for obtaining K*. As we do not see any reference
giving explicitly an algorithm for the purpose, here we present an algorithm in
detail.

Algorithm Aj:

Step 1. Let K = 0, sort the nodes of the current graph(it is G" initially)
according to the non-decreasing order of node costs.

Step 2. Find the node e; with the minimum cost and a positive degree in the
current graph, set K := K U {e;}, and delete the node e; and all edges incident
to it in the current graph.

Step 3. Repeat the process in Step 2 until the edge set of the current graph
is empty. Tale K* = K and stop.

Next we show that the set K™* resulted from algorithm A is indeed a minimum
bottleneck-cost node cover of G . In fact, it is easy to know that K™ is a node
cover of G'. We further show that K* has the minimum bottleneck-cost as
follows. Denote C;, = max{C;le; € K*}, and let K " be another node set of G~
such that max{C;le; € K'} < C;,. Then we know that e;, ¢ K . On the other
hand, according to algorithm A», there is a node e;. which is adjacent to e;,
such that C; > C;, implies that e; ¢ K " and thus both end nodes of the edge
(€iy,€:,) are not covered by K'. So, K' cannot be a node cover of G* and we
have finished the proof.

According to the above discuss, we get the following algorithm to solve the
discussed problem.

Algorithm Ajs:

Step 1. For each ¢; € T}, reduce the weight w; to B. If T is a minimum
spanning tree under weight vector w?, then stop; (2) is the optimal solution,
the modified cost is C'(B). Otherwise, go to Step 2.

Step 2. Construct a bipartite graph G = (T U (E \ T), A) where 4 =
{(ei,ej)le; € E\T, and ¢; € PJ'} and define the cost of each node ¢; to be ¢;.

Inverse constrained minimum spanning tree problem 293

If there exists some (e;, e;) € A, such that @w; — w; > I; + u;, then the problem
has no feasible solution and stop. Otherwise go to Step 3.
Step 3. Compute G and D by normalizing G .

Step 4. Run algorithm As to get a minimum bottleneck-cost node cover K*
of G".

Step 5. Output an optimal solution o = (a1, a2, - - , Q) Where « is speci-
fied is Theorem 4, the minimum modified cost is: C(B) + C{K* U D).

REFERENCES

1. R. K. Ahuja, T.L. Magnanti, and J. B. Orlin , Network Flows: Theory, Algorithms, and
Application, Prentice Hall: Englewood Cliffs, NJ, 1993.

2. E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and
Winston, 1976.

3. R. Motwani, Approzimation Algorithms, Lecture Notes, Stanford University, Stanford,
2000.

4. Hochbaum DS. Efficient algorithms for the inverse spanning tree problem. Operations
Research 2003; 51: 785-97.

5. Ahuja RK, Orlin JB, Inverse optimization, part i: Linear programming and general prob-
lem, Oper Res 2001; 35: 771-783.

6. Heuburger C, nverse optimization, a survey on problems, methods, and results, J Comb
Optim, 2004, 361.

7. Orlin JB, Inverse optimization and partial inverse optimization, PPT presentation on
Optimization Day Columbia University November 3 2003.

8. He Y, Zhang B, Yao E, Weighted inverse minimum spanning tree problems under Ham-
ming distance, J Comb Optim 2005; 9: 91-100.

9. Kruskal J.B., On the shortest spanning subtree of a graph and the traveling salesman
problem, Proceedings of the AMS 1956; 7: 48-50.

Department of Mathematics Shenyang Normal University, Shenyang, Liaoning, 110034
e-mail : jiaoli82@yahoo.cn

