This paper presents various interval estimation methods of binomial proportion for small n in multi-product small volume production and extremely small ^P like PPM or PPB fraction of defectives. This study classifies interval estimation of binomial proportion into three categories such as exact, approximate, Bayesian methods. These confidence intervals proposed in this paper can be applied to attribute process capability and attribute acceptance sampling plan for PPM or PPB.
본 논문에서는 지방부 간선도로에서 제공되는 단속류 구간통행시간 정보의 체계적인 수집 분석을 위해 현재 일부 국도에서 운영중인 차량번호판 매칭방식 AVI(자동차량인식장치 : Automated Vehicle Indentification)로부터 수집된 자료의 적합성분석 및 단속류 구간통행시간 자료의 적정집락간격(optimal aggregation interval)산정을 위한 통계적 결정방법을 연구하였다. 연구결과 차량번호판 매칭방식 AVI 수집자료는 통과위주의 대표차로상에서만 수집되기 때문에 차로간의 속도차가 크게 나타나는 단속류 구간에서는 전차로에 대한 통행시간 수집자료와 교통특성에 차이가 있으므로 현재의 차량번호판 매칭방식 ANI 표본수집 자료를 통해 산출된 구간통행기간을 구간의 대표값으로 적용하는 데에는 문제가 있어 이에 대한 추가적인 검토가 필요하다는 결론을 얻었다. 그리고, 단속류 구간의 통행시간 정보제공을 위한 수집자료의 적정집락간격 결정방법으로 점추정과 구간추정방법을 적용하여 모형을 개발하고, 이 모형을 적용한 결과 점추정모형이 구간추정모형보다 집락간격결정에 민감하고 보다 정확한 적정집락간격 선정이 가능한 것으로 밝혀졌으며, 단속류 구간의 적정집락간격은 5분으로 산정되어 현재 적용되고 있는 단속류 구간 5분 집락간격은 적정한 것으로 판단된다.
Journal of the Korean Data and Information Science Society
/
제24권6호
/
pp.1309-1317
/
2013
일반화 지수분포 (generalized exponential distribution)를 따르는 점진 제 1종 구간 중도절단 (progressive type-I interval censoring) 표본에서 모수 추정은 Chen과 Lio (2010)가 최대우도 추정법 (maximum likelihood estimation), 중간점 근사법 (mid-point approximation method), EM 알고리즘 (expectation maximization algorithm), 적률 추정법 (method of moments estimation; MME)으로 하였으며, 그 방법들 중 평균제곱오차 (mean square error; MSE)가 가장 작은 추정법은 중간점 근사법이다. 하지만 중간점 근사법을 바탕으로 최대우도 추정법을 이용하여 모수를 추정하려고 한다면 모수에 대한 해를 전개할 수 없기 때문에 수치 해석적인 방법을 이용하여 추정하여야 한다. 본 논문에서는 이러한 문제를 해결하기 위해서 근사 최대우도 추정법 (approximate maximum likelihood estimation)을 이용하여 두 종류의 모수를 추정하고, 모의실험을 통하여 수치해석학적인 방법을 이용한 중간점 근사법의 해 (estimate of mid-point approximation method; MP)와 제시한 두 가지 추정량을 평균제곱오차 측면에서 비교한다.
장래교통수요에 대한 예측은 기본적으로 4단계 수요추정방법을 통해 이루어지지만, 각 단계마다의 변화가 최종수요예측 결과에 미치는 영향에 대해서는 고려되지 못하고 있다. 즉, 장래에 대한 예측이 많은 변동성을 내포하고 있음에도 수요예측분석과정은 점 추정치(point-estimation)의 값을 입력자료로 분석하여 최종결과물 또한 점추정값으로 제시하고 있어 교통수요의 가변성 및 탄력성을 반영하지 못하고 있다. 하지만 교통 상황이 급속히 변화는 우리나라의 현실을 볼 때 교통수요가 갖고 있는 가변성과 탄력성을 반영하여 결과를 분석할 수 있는 구간추정방식(Interval-estimation)의 방법론에 대한 연구가 필요하다. 본 연구에서는 장래교통수요 예측 과정의 가장 초기단계인 통행발생단계의 회귀분석모형 적용시 구간추정방식을 적용하여 상한값과 하한값을 함께 산출하였다. 상한값과 하한값에 의한 발생 도착량에 대해 4단계 교통모형을 적용하여 발생량-도착량에 대한 Balancing, 통행분포, 통행배정의 4단계과정을 적용하였고 수요분석 각 단계에서의 도출된 결과에 대해 비교하였다. 최종적으로, 통행배정 된 교통량의 변화비율을 링크특성과 함께 비교분석하였다. 본 연구를 통해 수요분석 시 입력 자료의 불확실성이 가져오는 영향을 파악하였으며 신뢰구간에 의한 결과를 비교분석함으로써 수요추정의 가변성이 미치는 영향을 평가하였다. 또한 수요분석의 가변성에 따른 링크교통량의 탄력성을 평가할 수 있는 방법을 제시함으로써 교통수요 추정시 분석방법의 가변성 및 탄력성을 고려할 수 있다고 판단된다.
Let {Xn, n = 1,2,${\cdots}$} be i.i.d. random variables with the only unknown parameters mean ${\mu}$ and variance a ${\sigma}^2$. We consider a sequential confidence interval C1 for the mean with coverage probability 1-${\alpha}$ and expected length of confidence interval $E_{\theta}$(Length of CI)/${\mid}{\mu}{\mid}{\leq}k$ (k : constant) and give some asymptotic properties of the stopping time in various limiting situations.
Knowledge and data interpretation on statistical estimation was important to have statistical literacy that current curriculum was said not to satisfy. The author investigated mathematics teachers' MKT on statistical estimation concerning interpretation of confidence interval by using questionnaire and interview. SMK of teachers' confidence was limited to the area of textbooks to be difficult to interpret data of real life context. Most of teachers wrongly understood SMK of interpretation of confidence interval to have influence upon PCK making correction of students' wrong concept. SMK of samples and sampling distribution that were basic concept of reliability and confidence interval cognized representation of samples rather exactly not to understand importance and value of not only variability but also size of the sample exactly, and not to cognize appropriateness and needs of each stage from sampling to confidence interval estimation to have great difficulty at proper teaching of statistical estimation. PCK that had teaching method had problem of a lot of misconception. MKT of sample and sampling distribution that interpreted confidence interval had almost no relation with teachers' experience to require opportunity for development of teacher professionalism. Therefore, teachers were asked to estimate statistic and to get confidence interval and to understand concept of the sample and think much of not only relationship of each concept but also validity of estimated values, and to have knowledge enough to interpret data of real life contexts, and to think and discuss students' concepts. So, textbooks should introduce actual concepts at real life context to make use of exact orthography and to let teachers be reeducated for development of professionalism.
This paper presents an algorithm of identifying parametric uncertainty by way of an interval model. For a given set of frequency response data from an uncertain linear SISO system of which the upper and the lower bounds of both magnitude and phase responses are represented, the proposed algorithm consists of two main parts: first, the nominal model is identified by using Least Square Estimation (LSE), and then an interval model is constructed by expanding the extremal properties of interval systems, so that tightly enclose the given envelopes within those of interval model. Two numerical examples are given to demonstrate and verify the developed algorithm. The identified interval model can be used for evaluating the worst case performance and stability margins against parametric uncertainty by using some extremal properties on interval systems.
The effects of recording interval (1, 2, 3, 4, 5, 10, 15, 20 and 30 min) on the estimation of some grazing behavior variables in beef cows and calves (<4 months old) were investigated in a daytime grazing (7 h) system utilizing a bahiagrass (Paspalum notatum Flugge) pasture (a 1.1 ha paddock and a 0.4 ha resting area). Recording intervals of 10-30 min tended to underestimate the time spent grazing and ruminating and overestimate the time spent resting by animals, whereas intervals of 1-5 min resulted in almost constant estimates. In all grazing activities, the errors of estimation became larger when the recording interval exceeded 5 min. The accuracy of estimation was higher for grazing time>rumination time>resting time. An increase in recording interval always decreased estimates of the distance walked by animals. It was concluded that recording intervals of 1-5 min provide reliable estimates of the time spent grazing, ruminating and resting. It was also concluded that positioning of animals at 1 min intervals may provide estimates of walking distance with acceptable bias toward underestimation.
Journal of the Korean Data and Information Science Society
/
제19권4호
/
pp.1281-1288
/
2008
The purpose of this study is to consider the efficient methods for introducing the confidence interval. We explain various concepts and approaches about the confidence interval estimation. Computing methods for calculating the efficient confidence interval are suggested.
확률적 특성을 가지는 시스템의 시험을 위해서는 시험 입력을 일정 횟수만큼 반복하여 제공하고 관찰된 데이터를 기반으로 판정이 내려져야 한다. 구간 추정 기법을 이용하여 관찰된 데이터로부터 확률 값이 올바른지 여부를 판단할 수 있으며, 이 때 적절한 신뢰구간의 선택은 시험의 품질을 결정하는 중요한 요인이 된다. 본 논문에서는 다양한 크기의 표본에 대해 대표적인 구간 추정 기법인 Wald 신뢰구간과 Agresti-Coull 신뢰구간을 비교 분석한다. 각 신뢰구간이 확률 값 시험에 사용되었을 경우 올바른 구현 제품이 시험을 통과할 확률과 잘못된 구현제품이 시험을 통과하지 못할 확률을 기반으로 비교 분석을 수행하며, 확률 값이 올바른지를 판단하기 위한 양측검정뿐만 아니라 확률 값이 기준 확률 이상인지 여부를 판단하기 위한 단측검정을 사용하는 경우에 대해서도 비교 분석을 수행한다. 비교 분석 결과 양측검정의 경우 Agresti-Coull 신뢰구간을 사용할 것을 추천하며, 단측검정의 경우 큰 크기의 표본에 대해서는 Agresti-Coull 신뢰구간을, 적은 크기의 표본에 대해서는 Wald 신뢰구간 또는 Agresti-Coull 신뢰구간을 선택적으로 사용할 것을 추천한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.