• 제목/요약/키워드: Internet based learning

검색결과 1,577건 처리시간 0.03초

중복 허용 범위를 고려한 서바이벌 네트워크 기반 안드로이드 저자 식별 (Survival network based Android Authorship Attribution considering overlapping tolerance)

  • 황철훈;신건윤;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.13-21
    • /
    • 2020
  • 안드로이드 저자 식별 연구는 좁은 범위에서는 출처를 밝히기 위한 방법으로 해석할 수 있으나, 넓은 범위에서 본다면 알려진 저작물을 통해 유사한 저작물을 식별하는 통찰력을 얻기 위한 방법으로 해석할 수 있다. 안드로이드 저자 식별 연구에서 발견되는 문제점은 안드로이드 시스템 상 중요한 코드이지만 의미가 없는 코드들로 인하여 저자의 중요한 특징을 찾기 어렵다는 것이다. 이로 인해 합법적인 코드 또는 행동들이 악성코드로 잘못 정의되기도 한다. 이를 해결하기 위하여 서바이벌 네트워크 개념을 도입하여 여러 안드로이드 앱에서 발견되는 특징들을 제거하고 저자별로 정의되는 고유한 특징들을 생존시킴으로써 문제를 해결하고자 하였다. 제안하는 프레임워크와 선행된 연구를 비교하는 실험을 진행하였으며, 440개의 저자가 식별된 앱을 대상으로 실험한 결과에서 최대 92.10%의 분류 정확도를 도출하였고 선행된 연구와 최대 3.47%의 차이를 보였다. 이는 적은 양의 학습데이터를 이용하였으나 저자별 중복된 특징 없이 고유한 특징들을 이용하였기에 선행 연구와 차이가 나타났을 것으로 해석하였다. 또한 특징 정의 방법에 따른 선행 연구와의 비교 실험에서도 적은 수의 특징으로 동일한 정확도를 보일 수 있으며, 이는 서바이벌 네트워크 개념을 통한 지속적으로 중복된 의미 없는 특징을 관리할 수 있음을 알 수 있었다.

Gramian angular field 기반 비간섭 부하 모니터링 환경에서의 다중 상태 가전기기 분류 기법 (Classification Method of Multi-State Appliances in Non-intrusive Load Monitoring Environment based on Gramian Angular Field)

  • 선준호;선영규;김수현;경찬욱;심이삭;이흥재;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.183-191
    • /
    • 2021
  • 비간섭 부하 모니터링은 사용자 에너지 소비량의 실시간 모니터링을 통해 가전기기의 사용량 예측 및 분류를 하는 기술로, 최근 에너지 절약의 수단으로 관심이 증가하고 있다. 본 논문에서는 GAF(Gramian angular field) 기반 1차원 시계열 데이터를 2차원 행렬로 변환하는 기법과, 합성곱 신경망(convolutional neural networks)을 결합해 사용자 전력 사용량 데이터로부터 가전기기를 예측하는 시스템을 제안한다. 학습을 위해 공개 가정용 전력 데이터인 REDD(residential energy disaggregation dataset)를 사용하고, GASF(Gramian angular summation field), GADF(Gramian angular difference field)의 분류 정확도를 확인한다. 시뮬레이션 결과, 이중 상태(on/off)를 가지는 가전기기에서 두 모델 모두 97%의 정확도를 보였고, 다중 상태를 가지는 기기에서 GASF는 95%로 GADF보다 3% 높은 정확도를 보임을 확인하였다. 차후 데이터의 량을 증가시키고 모델을 최적화해 정확도와 속도를 개선할 예정이다.

머신러닝 기반 시설재배 딸기 생산량 예측 연구 (A Study on the Prediction of Strawberry Production in Machine Learning Infrastructure)

  • 오한별;임종현;양승원;조용윤;신창선
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.9-16
    • /
    • 2022
  • 최근 농업 현장에서는 빅데이터와 IoT(Internet of Things) 등 기술을 적용하여 디지털농업 스마트팜으로 자동화를 하고 있다. 이러한 스마트팜은 작물의 환경을 측정하고 데이터를 조사하고 가공하여 생산량의 증대와 작물의 품질을 향상하고자 한다. 생산량 예측은 첨단 농업인 스마트팜 디지털 농업에서 중요한 연구로 빅데이터를 활용하여 환경데이터를 분석하고 나아가 생육정보 데이터 품질 관리를 위한 표준화 연구가 필요하다. 본 논문에서는 스마트팜 딸기 농장에서 수집된 환경 및 생산량 데이터를 분석하여 연구하였다. 회귀분석을 기반으로 릿지회귀(Ridge Regression), LightGBM, XGBoost를 사용하여 작물 생산량 예측 모델을 분석하였다. 3가지 모델 중 최적의 모델은 XGBoost로 R2는 82.5%의 설명력을 보였다. 연구 결과 양액흡수량과 환경데이터간의 상관관계를 확인할 수 있었고, 생산량 예측 연구에 대한 유의미한 결과를 얻을 수 있었다. 향후 작물의 생육환경 정보 및 양액의 성분 등 양액흡수량을 연구하여 양액관리를 통해 환경오염 예방 및 양액 절감에 기여할 것으로 기대된다.

태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델 (DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics)

  • 가덕현;오승택;임재현
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.29-35
    • /
    • 2022
  • 자외선은 노출 정도에 따라 인체에 유익 또는 유해한 영향을 미치므로 개인별 적정 노출을 위해서는 정확한 자외선(UV) 정보가 필요하다. 국내의 경우 기상청에서 생활기상정보의 한 요소로 자외선 정보를 제공하고 있으나 지역별 자외선 지수(UVI, Ultraviolet Index)로 사용자 위치의 정확한 UVI를 제공하지는 못하고 있다. 일부에서는 정확한 UVI의 취득을 위해 직접 계측기를 운용하지만 비용이나 편의성에 문제가 있고, 태양의 복사량과 운량 등 주변 환경요소를 통해 자외선 양을 추정하는 연구도 소개되었으나 개인별 서비스 방법을 제시하지는 못하였다. 이에 본 논문에서는 각 개인별 위치에서의 정확한 UVI 제공을 위한 태양객체 정보와 태양광 특성을 이용한 UVI 산출 딥러닝 모델을 제안한다. 기 수집한 하늘이미지 및 태양광 특성을 분석하여 태양의 위치 및 크기, 조도 등 UVI와 상관도가 높은 요소들을 선정한 후 DNN 모델을 위한 데이터 셋을 구성한다. 이후 하늘이미지로부터 Mask R-CNN을 통해 추출한 태양객체 정보와 태양광 특성을 입력하여 UVI를 산출하는 DNN 모델을 구현한다. 국내 UVI 권고기준을 고려, UVI 8이상과 미만인 날에 대한 성능평가에서는 기준장비 대비 MAE 0.26의 범위 내 정확한 UVI의 산출이 가능하였다.

텍스트마이닝을 활용한 아동, 청소년 대상 소비관련 연구 키워드 분석 (Keyword Analysis of Research on Consumption of Children and Adolescents Using Text Mining)

  • 진현정
    • 한국가정과교육학회지
    • /
    • 제33권4호
    • /
    • pp.1-13
    • /
    • 2021
  • 본 연구는 텍스트마이닝 기법으로 최근 20년간 아동, 청소년 대상 소비 관련 연구의 주요어를 분석하여 소비 관련 연구의 동향을 파악하고자 하였다. 이를 위하여 KCI 등재/등재후보 학술지에 게재된 아동, 청소년의 소비관련 연구 869편의 주요어를 분석하였다. 빈도분석 결과 가장 빈도가 높은 주요어는 청소년, 청소년소비자, 소비자교육, 과시소비, 소비행동, 캐릭터, 경제교육, 윤리적소비 순으로 나타났다. 5년 단위로 주요어의 빈도를 분석한 결과, 2006년~2010년에는 소비자교육의 빈도가 월등하게 높아 이 시기에 소비자교육에 관한 연구가 많이 이루어졌음을 확인할 수 있었다. 2011년 이후 윤리적소비에 관한 연구가 활발해졌으며, 최근 5년 동안은 두드러지는 주요어가 없는 대신 다양한 주제로 연구가 이루어졌음을 알 수 있었다. TF-IDF 기준으로 주요어를 살펴보면 2001년~2005년 사이에는 환경과 인터넷 관련 단어가 주요 키워드였다. 2006년~2010년에는 미디어이용, 광고 교육, 인터넷아이템, 2011년~2015년에는 공정무역, 녹색성장, 녹색소비, 북한이탈청소년, 소셜미디어, 2016~2020년에는 텍스트마이닝, 지속가능발전교육, 메이커교육, 2015개정교육과정이 중요한 용어로 등장하였다. 토픽모델링 결과, 소비자교육, 대중매체/또래문화, 합리적 소비, 한류/문화산업, 소비자역량, 경제교육, 교수학습방법, 친환경/윤리적소비의 8개의 토픽이 도출되었다. 동시 출현 빈도를 활용한 네트워크 분석을 통해 아동, 청소년 관련 소비 연구에서 과시소비와 소비자교육이 중요한 연구주제임을 알 수 있었다.

국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구 (A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM))

  • 신우택;이진희;김정우;신동선;이영상;황승호
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.169-178
    • /
    • 2020
  • 국방부는 감소되는 부대 및 병력자원의 문제해결과 전투력 향상을 위해 4차 산업혁명 기술(빅데이터, AI)의 적극적인 도입을 추진하고 있다. 국방 정보시스템은 업무 영역 및 각군의 특수성에 맞춰 다양하게 개발되어 왔으며, 4차 산업혁명 기술을 적극 활용하기 위해서는 현재 폐쇄적으로 운용하고 있는 국방 데이터 관리체계의 개선이 필요하다. 그러나, 국방 빅데이터 및 인공지능 도입을 위해 전 정보시스템에 데이터 표준을 제정하여 활용하는 것은 보안문제, 각군 업무특성 및 대규모 체계의 표준화 어려움 등으로 제한사항이 있고, 현 국방 데이터 공유체계 제도적으로도 각 체계 상호간 연동 소요를 기반으로 체계간 연동합의를 통해 직접 연동을 통하여 데이터를 제한적으로 공유하고 있는 실정이다. 4차 산업혁명 기술을 적용한 스마트 국방을 구현하기 위해서는 국방 데이터를 공유하여 잘 활용할 수 있는 제도마련이 시급하고, 이를 기술적으로 뒷받침하기 위해 국방상호운용성 관리지침 규정에 따라 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 국방 데이터의 체계적인 표준 관리를 지원하는 다중 데이터 저장소 관리(MRMM) 기술개발이 필요하다. 본 연구에서는 스마트 국방 구현을 위해 가장 기본이 되는 국방 데이터의 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고, 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 다중 데이터 저장소 관리 (MRMM) 기술을 제시하고, 단어의 유사도를 통해 MRMM의 실현 방향성을 구현하였다. MRMM을 바탕으로 전군 DB의 표준화 통합을 좀 더 간편하게 하여 실효성 있는 국방 빅데이터 및 인공지능 데이터 구현환경을 제공하여, 스마트 국방 구현을 위한 막대한 국방예산 절감과 전투력 향상을 위한 전력화 소요기간의 감소를 기대할 수 있다.

특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류 (IPC Multi-label Classification based on Functional Characteristics of Fields in Patent Documents)

  • 임소라;권용진
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.77-88
    • /
    • 2017
  • 최근 지식과 정보가 가치를 생산하는 지식기반사회로 접어들면서 지식재산권의 대표적인 형태인 특허에 대한 중요성이 매우 높아지고 있으며 출원되는 특허의 양도 매년 증가하고 있다. 방대한 양의 특허정보를 효과적으로 이용하기 위해서 특허문서를 그 발명의 기술적 주제에 따라 적절하게 분류하는 것이 필요하며 이를 위해 IPC(International Patent Classification)가 주로 사용되고 있다. 현재 주로 사람의 손으로 이뤄지는 특허문서의 IPC 분류과정의 효율성을 높이기 위하여 다양한 데이터마이닝과 기계학습 알고리즘을 기반으로 IPC 자동분류에 관한 연구들이 수행되어 왔다. 하지만 기존의 IPC 자동분류에 관한 연구의 대부분은 특허문서의 구조적 특징과 같은 특허문서 고유의 데이터 특성에 대한 고려보다는 다양한 기계학습 알고리즘을 특허문서로 적용하는 것에 초점을 맞춰왔다. 이에 본 논문에서는 IPC 자동분류를 위해 특허문서의 특징과 구조적 필드의 역할을 기반으로 특허문서 분류에 영향을 끼치는 두 가지 필드, 기술분야 및 배경기술 필드의 활용을 제안한다. 그리고 특허문서가 동시에 다수의 IPC 분류코드를 가지는 점을 반영하여 다중 레이블 분류(multi-label classification) 모델을 구축한다. 또한 IPC 다중 레이블 분류의 실제 현장에서의 적용 가능성 확인을 위해 630개의 범주를 가지는 IPC 서브클래스 레벨까지 분류 가능한 수법을 제안한다. 이를 위해 국내에서 등록된 564,793건의 특허문서를 대상으로 특허문서의 구조적 필드의 영향을 확인하기 위한 IPC 다중 레이블 분류 실험을 수행하였고, 그 결과 제목, 요약, 청구항, 기술분야 및 배경기술 필드를 활용한 실험에서 87.2%의 싱글매치 정확도를 얻었다. 이를 통해 기술분야 및 배경기술 두 필드가 IPC 서브클래스 레벨까지의 다중 레이블 분류의 정확도를 향상시키는데 중요한 역할을 하고 있음을 확인하였다.

전통문화 콘텐츠 표준체계를 활용한 자동 텍스트 분류 시스템 (A System for Automatic Classification of Traditional Culture Texts)

  • 허윤아;이동엽;김규경;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.39-47
    • /
    • 2017
  • 한국 문화의 역사, 전통과 관련된 디지털 웹 문서가 증가하게 되었다. 하지만 창작자 또는 전통 문화와 관련된 소재를 찾는 사용자들은 정보를 검색해도 결과가 충분하지 않았으며 원하는 정보를 얻지 못하는 경우가 나타나고 있다. 이런 효과적인 정보를 접하기 위해서는 문서 분류가 필요하다. 과거에 문서 분류는 작업자가 수작업으로 문서 분류하여 시간과 비용이 많이 소비하는 어려움이 있었지만, 최근 기계학습 기반으로 한 자동 문서 분류를 통해 효율적인 문서 분류가 이루어진다. 이에 본 논문은 전통문화 콘텐츠를 체계적인 분류체계로 구성한 한민족정보문화마당 데이터를 기반으로 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발한다. 본 연구는 한민족정보문화마당 텍스트 데이터에 대해 단어 빈도수를 추출하기 위해 TF-IDF모델, Bag-of-Words 모델, TF-IDF/Bag-of-Words를 결합한 모델을 적용하여 각각 SVM 분류 알고리즘을 사용하여 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발하여 성능평가를 확인하였다.

멀티미디어 교실을 위한 윈도우 NT 기반 스트림 서버 구현 (Implementation of a Windows NT Based Stream Server for Multimedia School Systems)

  • 손주영
    • 한국멀티미디어학회논문지
    • /
    • 제2권3호
    • /
    • pp.277-288
    • /
    • 1999
  • 개인화된 학습내용과 진도로 멀티미디어를 이용한 교재를 통해 학습 효과를 크게 제고할 수 있는 중등학교 멀티미디어 교실과 대학의 멀티미디어 센터를 위한 분산 스트림 서버 시스템을 구현하였다. 기존의 멀티미디어 정보 재생 시스템은 멀티미디어 교실에 적용하기에 적절하지 못한 제약점을 가지고 있다. 과다한 스트림당 비용이 요구되거나 그렇지 않으면 학습에 활용하기에는 저급한 재생 품질, 원활하지 못하는 시스템 및 서비스 확장성, 개별적 고유 클라이언트 환경에 의한 사용 이절감, 교사 조작 능력과 표현 의도가 전혀 고려되지 않은 일반적 저작 도구로 인한 교재 저작 어려움 그리고 구성 시스템간의 유기적 연동 부재로 인한 관리 어려움 등의 문제점을 극복한 시스댐을 구현하였다. 폐쇄되어 있는 교실에서뿐만 아니라 인터넷을 통한 광범 위한 원격 교육에 확장할 수 있도록 웹 기반 분산 시스댐으로 구성하였다. 전체 시스템의 구성 요소는 멀티미 디어 정보 저장 및 재생을 담당하는 스트림 서버 클라이언트 시스템, 분산되어 있는 서버의 통합 역할을 하는 서비스 게이트웨이, 그리고 클립 및 교재 저작을 위한 저작관리 시스템 등이다. 본 논문에서는 그 가운데 멀티미디어 정보를 저장, 전송하는스트립 서버의 설계 및 구현에 대해 설명한다. 윈도우NT서버에서 실행되는 한 대의 스트림 서버 시스템으로 한 학급의 클라이언트(50-60대)에서 MPEG~ 1 스트렴을 동시에 재생할 수 있는 성능을 아무런 시스템 변경 없이 응용 수준의 소프트웨어 엔진만으로 실현하였다. 그리고 타 구성 요소 시스템간의 유기적 연동을 통한 시스템의 확장성과 서비스의 유연성을 확보할 수 있었다.

  • PDF

모바일 한자 학습 애니메이션 생성 (Animation Generation for Chinese Character Learning on Mobile Devices)

  • 구상옥;장현규;정순기
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권12호
    • /
    • pp.894-906
    • /
    • 2006
  • 모바일 기기의 성능 및 화면, 무선 네트워크의 속도 등의 제약으로 모바일 컨텐츠 개발에는 많은 어려움이 있다. 단순히 유선 웹상에서 기존에 서비스 되던 컨텐츠의 가시적인 축소만으로는 양질의 컨텐츠 제작이 어렵다. 빠르게 변화하는 모바일 컨텐츠 시장에 적응하기 위해서는 컨텐츠 특성에 최적화된 데이타 표현 기법 및 저작 도구의 개발이 이루어져야 한다. 본 논문에서는 모바일 기기 상에서의 한자 학습을 위한 적은 용량의 모바일 컨텐츠 및 저작 도구를 개발하였다. 본 연구에서 개발한 모바일 컨텐츠는 단순히 한자 이미지와 설명 정보를 보여주는 것이 아니라, 한자 획순으로 붓으로 쓰는 것과 같은 애니메이션 효과를 줄 수 있다. 또한 저작 도구는 사용자가 그래픽이나 한자, 모바일 프로그래밍에 관한 전문가가 아니더라도 쉽고 빠르게 컨텐츠를 생성할 수 있는 개발 환경을 제공한다. 본 논문은 트루타입 폰트로부터 글자 모양을 획득하여, 간단한 사용자 입력으로 획 분할 및 획 순서 정보를 얻고, 자동으로 획의 방향을 추출, 각 획마다 붓으로 쓰는 효과의 애니메이션을 생성한다. 다음으로 모바일 기기에서의 효율적인 글자 애니메이션을 위해 애니메이션 데이타를 압축한다. 본 논문은 한자뿐 아니라, 한글 또는 다른 형태의 그래픽에도 이용될 수 있으며, 향후 획 분할 및 획 순서 결정을 자동화하는 방법을 연구하고자 한다.