• Title/Summary/Keyword: Internal Quantum Efficiency

Search Result 74, Processing Time 0.034 seconds

Comparisons of lasing characteristics of InGaAs quantum-dot and quantum well laser diodes (InGaAs 양자점 레이저 다이오드와 양자우물 레이저 다이오드의 특성 비교)

  • Jung, Kyung-Wuk;Kim, Kwang-Woong;Ryu, Sung-Pil;Cho, Nam-Ki;Park, Sung-Jun;Song, Jin-Dong;Choi, Won-Jun;Lee, Jung-Il;Yang, Hae-Suk
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.371-376
    • /
    • 2007
  • We have investigated the lasing characteristics of the InGaAs quantum dot laser diode (QD-LD) and InGaAs quantum well laser diode (QW-LD) operated at the 980 nm wavelength range. The 980-nm lasers are used as a pumping source for a erbium-doped fiber amplifier (EDFA) and it shows high efficiency in long-haul optical fiber network. We have compared the threshold current density, the characteristic temperature, the optical power and the internal efficiency of QD-LD and QW-LD under a pulsed current condition. The QD-LD shows superior performances to the QW-LD. Further optimization of a LD structure is expected to the superior performances of a QD-LD.

4181Overcoming the High-current Efficiency Loss Mechanism in GaN-based Light-emitting Diodes

  • Kim, Jong-Gyu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.23.2-23.2
    • /
    • 2011
  • This presentation will include an overview of III-Nitride LED technology, applications, key areas for future improvements, challenges such as efficiency droop. GaN-based high-power light-emitting diodes (LEDs) suffer from high-current loss mechanisms that lead to a significant decrease in internal quantum efficiency at high drive currents, a well-known phenomenon commonly referred to as efficiency droop. Although many attempts have been made to uncover this LED's darkest secret, there is still a lack of consensus on the dominant mechanism responsible for this detrimental phenomenon. In this presentation, proposed origins and corresponding solutions to the droop-causing mechanisms will be reviewed and discussed.

  • PDF

Frequency-Domain Circuit Model and Analysis of Coupled Magnetic Resonance Systems

  • Huh, Jin;Lee, Wooyoung;Choi, Suyong;Cho, Gyuhyeong;Rim, Chuntaek
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.275-286
    • /
    • 2013
  • An explicit frequency-domain circuit model for the conventional coupled magnetic resonance system (CMRS) is newly proposed in this paper. Detail circuit parameters such as the leakage inductances, magnetizing inductances, turn-ratios, internal coil resistances, and source/load resistances are explicitly included in the model. Accurate overall system efficiency, DC gain, and key design parameters are deduced from the model in closed form equations, which were not available in previous works. It has been found that the CMRS can be simply described by an equivalent voltage source, resistances, and ideal transformers when it is resonated to a specified frequency in the steady state. It has been identified that the voltage gain of the CMRS was saturated to a specific value although the source side or the load side coils were strongly coupled. The phase differences between adjacent coils were ${\pi}/2$, which should be considered for the EMF cancellations. The analysis results were verified by simulations and experiments. A detailed circuit-parameter-based model was verified by experiments for 500 kHz by using a new experimental kit with a class-E inverter. The experiments showed a transfer of 1.38 W and a 40 % coil to coil efficiency.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

GaN Base Blue LED on Patterned Sapphire Substrate by Wet Etching (습식식각 방법으로 제작한 패턴 형성 사파이어 기판을 가지는 GaN계 청색 LED)

  • Kim, Do-Hyung;Yi, Yong-Gon;Yu, Soon-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • Sapphire substrate was patterned by a selective chemical wet etching technique, and GaN/InGaN structures were grown on this substrate by MOVPE (Metal Organic Vapor Phase Epitaxy). The surface of grown GaN on patterned sapphire substrate (PSS) has good morphology and uniformity. The patterned sapphire substrate LED showed better light output than conventional LED that improvement 50%. We think these results come from enhancement of internal quantum efficiency by decrease of threading dislocation and increase of light extraction efficiency. Also these LED showed more uniform emission distribution in angle than conventional LED.

Design of 808nm GRIN-SCH Quantum Dot Laser Diode (808nm GRIN-SCH 양자점 레이저 다이오드 설계)

  • Chan, Trevor;Son, Sung-Hun;Kim, Kyoung-Chan;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.131-131
    • /
    • 2010
  • The power of semiconductor laser diodes has been limited primarily by the heating effects which occur at high optical intensities. The actual limiting event can take one of a number of forms such as. catastrophic optical damage or filamentation. A general approach to this problem is to design a heterostructure which creates a high powered output while maintaining low internal optical intensities. A graded index separate confinement heterostructure (GRIN-SCH) is one such structure that accomplishes the above task. Here, the active region is sandwiched between graded index layers where the index of refraction increases nearer to the active layer. This structure has been shown to yield a high efficiency due to the confinement of both the optical power and carriers, thereby reducing the optical intensity required to achieve higher powers. The optical confinement also reinforces the optical beam quality against high power effects. Quantum dots have long been a desirable option for laser diodes due to the enhanced optical properties associated with the zeroth dimensionality. In our work, we use PICS3D software created by Crosslight Software Inc. to simulate the performance of In0.67A10.33As/A10.2Ga0.8AsquantumdotsusedwithaGRIN-SCH. The simulation tools are used to optimize the GRIN-SCH structure for high efficiency and optical beam quality.

  • PDF

Growth and Characteristics of Near-UV LED Structures on Wet-etched Patterned Sapphire Substrate

  • Cheong, Hung-Seob;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.199-205
    • /
    • 2006
  • Patterned sapphire substrates (PSS) were fabricated by a simple wet etching process with $SiO_2$ stripe masks and a mixed solution of $H_2SO_4$ and $H_3PO_4$. GaN layers were epitaxially grown on the PSS under the optimized 2-step growth condition of metalorganic vapor deposition. During the 1st growth step, GaN layers with triangular cross sections were grown on the selected area of the surface of the PSS, and in the 2nd growth step, the GaN layers were laterally grown and coalesced with neighboring GaN layers. The density of threading dislocations on the surface of the coalesced GaN layer was $2{\sim}4\;{\times}\;10^7\;cm^{-2}$ over the entire region. The epitaxial structure of near-UV light emitting diode (LED) was grown over the GaN layers on the PSS. The internal quantum efficiency and the extraction efficiency of the LED structure grown on the PSS were remarkably increased when compared to the conventional LED structure grown on the flat sapphire substrate. The reduction in TD density and the decrease in the number of times of total internal reflections of the light flux are mainly attributed due to high level of scattering on the PSS.

Design Analysis of Crystalline Silicon Solar Cell Using 1-Dimensional Modelling (1차원 모델링을 이용한 결정질 실리콘 태양전지의 디자인 해석)

  • Kim, Dong-Ho;Park, Sang-Wook;Cho, Eun-Chel
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.571-576
    • /
    • 2008
  • The simulation program for solar cells, PC1D, was briefly reviewed and the device modeling of a multicrystalline Si solar cell using the program was carried out to understand the internal operating principles. The effects of design parameters on the light absorption and the quantum efficiency were investigated and strategies to reduce carrier recombination, such as back surface field and surface passivation, were also characterized with the numerical simulation. In every step of the process, efficiency improvements for the key performance characteristics of the model device were determined and compared with the properties of the solar cell, whose efficiency (20.3%) has been confirmed as the highest in multicrystalline Si devices. In this simulation work, it was found that the conversion efficiency of the prototype model (13.6%) can be increased up to 20.7% after the optimization of design parameters.

Study of Optical Properties of InxGa1-xN/GaN Multi-Quantum-Well (InxGa1-xN/GaN 다중양자우물 구조의 광학적 성질 연구)

  • Kim, Ki-Hong;Kim, In-Su;Park, Hun-Bo;Bae, In-Ho;Yu, jae-In;Jang, Yoon-Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Temperature and injection current dependence of electroluminescence(EL) spectral intensity of the $In_xGa_{1-x}N$/GaN multi-quantum wells(MQW) have been studied over a wide temperature range and as a function of injection current level. It is found that a temperature-dependent variation pattern of the EL efficiency under very low and high injection currents shows a drastic difference. This unique EL efficiency variation pattern with temperature and current can be explained field effects due to the driving forward bias in presence of internal(piezo and spontaneous polarization) fields. Increase of the indium content in $In_xGa_{1-x}N$/GaN multiple quantum wells gives rise to a redshift of 80 meV and 22 meV for green and blue MQW, respectively. It can be explained by carrier localization by potential fluctuation of multiple quantum well and MQW structures also shows a keen difference owing to the different indium content in InGaN/GaN MQW.

p-Type Activation of AlGaN-based UV-C Light-Emitting Diodes by Hydrogen Removal using Electrochemical Potentiostatic Activation (전기화학적 정전위 활성화를 사용한 수소 제거에 의한 AlGaN기반의 UV-C 발광 다이오드의 p-형 활성화)

  • Lee, Koh Eun;Choi, Rak Jun;Kumar, Chandra Mohan Manoj;Kang, Hyunwoong;Cho, Jaehee;Lee, June Key
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.85-89
    • /
    • 2021
  • AlGaN-based UV-C light-emitting diodes (LEDs) were applied for p-type activation by electrochemical potentiostatic activation (EPA). The p-type activation efficiency was increased by removing hydrogen atoms through EPA treatment using a neutral Mg-H complex that causes high resistance and low conductivity. A neutral Mg-H complex is decomposed into Mg- and H+ depending on the key parameters of solution, voltage, and time. The improved hole carrier concentration was confirmed by secondary ion mass spectroscopy (SIMS) analysis. This mechanism eventually improved the internal quantum efficiency (IQE), the light extraction efficiency, the leakage current value in the reverse current region, and junction temperature, resulting in better UV-C LED lifetime. For systematic analysis, SIMS, Etamax IQE system, integrating sphere, and current-voltage measurement system were used, and the results were compared with the existing N2-annealing method.