DOI QR코드

DOI QR Code

p-Type Activation of AlGaN-based UV-C Light-Emitting Diodes by Hydrogen Removal using Electrochemical Potentiostatic Activation

전기화학적 정전위 활성화를 사용한 수소 제거에 의한 AlGaN기반의 UV-C 발광 다이오드의 p-형 활성화

  • Lee, Koh Eun (LG Innotek Co. Ltd.) ;
  • Choi, Rak Jun (LG Innotek Co. Ltd.) ;
  • Kumar, Chandra Mohan Manoj (Department of Materials Science & Engineering, Chonnam National University) ;
  • Kang, Hyunwoong (School of Semiconductor and Chemical Engineering, Jeonbuk National University) ;
  • Cho, Jaehee (School of Semiconductor and Chemical Engineering, Jeonbuk National University) ;
  • Lee, June Key (Department of Materials Science & Engineering, Chonnam National University)
  • Received : 2021.12.09
  • Accepted : 2021.12.14
  • Published : 2021.12.30

Abstract

AlGaN-based UV-C light-emitting diodes (LEDs) were applied for p-type activation by electrochemical potentiostatic activation (EPA). The p-type activation efficiency was increased by removing hydrogen atoms through EPA treatment using a neutral Mg-H complex that causes high resistance and low conductivity. A neutral Mg-H complex is decomposed into Mg- and H+ depending on the key parameters of solution, voltage, and time. The improved hole carrier concentration was confirmed by secondary ion mass spectroscopy (SIMS) analysis. This mechanism eventually improved the internal quantum efficiency (IQE), the light extraction efficiency, the leakage current value in the reverse current region, and junction temperature, resulting in better UV-C LED lifetime. For systematic analysis, SIMS, Etamax IQE system, integrating sphere, and current-voltage measurement system were used, and the results were compared with the existing N2-annealing method.

AlGaN 기반 UV-C 발광다이오드(LEDs)에 전기화학적 전위차 활성화(EPA)에 의한 p-형 활성화를 진행하였다. 높은 저항과 낮은 전도도를 유발하는 중성 Mg-H의 복합체의 수소원자를 EPA를 이용하여 제거하여 p-형 활성화 효율을 높였다. 중성 Mg-H 복합체는 주요 매개 변수인 용액, 전압, 시간에 의해 Mg-과 H+로 분해되며, 2차 이온질량 분광법(SIMS) 분석을 통하여 개선된 정공 캐리어의 농도를 확인할 수 있었다. 이 메커니즘은 결국 내부 양자효율(IQE)의 증가, 광 추출 효율 향상, 역 전류 영역의 누설전류 값 개선, 접합 온도 개선 등을 이루어 결과적으로 UV-C LED의 수명을 향상시켰다. 체계적인 분석을 위해 SIMS, Etamax IQE 시스템, 적분구, 전류-전압(I-V) 측정 등을 사용하였으며, 그 결과를 기존의 N2-열 처리 방법과 비교 평가하였다.

Keywords

Acknowledgement

본 연구는 LG이노텍 및 전남대학교 연구년교수 연구비(과제번호 : 2021-1446)지원에 의하여 수행된 연구이며, 또한 본 연구는 2019년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받은 기초과학연구역량강화사업 핵심연구지원센터 조성 지원 과제에서 에너지 융복합 전문핵심 연구지원센터를 조성하여 수행된 연구결과임(과제번호 2019R1A6C1010024).

References

  1. S. J. Choi, J. H. Kim, and H. H. Lee, "Deep-UV Curing of Poly (4-Vinyl Phenol) Gate Dielectric for Hysteresis-free Organic Thin-film Transistors," IEEE Electron Device Letters, 30(5), 454 (2009). https://doi.org/10.1109/LED.2009.2015782
  2. K. Song, M. Mohseni, and F. Taghipour, "Application of Ultraviolet Light-emitting Diodes (UV-LEDs) for Water Disinfection: A Review," Water Research, 94, 341 (2016). https://doi.org/10.1016/j.watres.2016.03.003
  3. M. Mori, A. Hamamoto, M. Nakano, M. Akutagawa, A. Takahashi, T. Ikehara, and Y. Kinouchi, "Effects of Ultraviolet LED on Bacteria," World Congress on Medical Physics and Biomedical Engineering, 2006, 1327 (2007).
  4. S. Zlotnik, J. Sitek, K. Rosinski, P. P. Michalowski, J. Gaca, M. Wojcik, and M. Rudzinski, "Growth and Thermal Annealing for Acceptor Activation of p-type (Al) GaN Epitaxial Structures: Technological Challenges and Risks," Applied Surface Science, 488, 688 (2019). https://doi.org/10.1016/j.apsusc.2019.05.306
  5. M. Crawford, "Materials challenges of AlGaN-based UV Optoelectronic Devices," Semiconductors and Semimetals 96, 3 (2017). https://doi.org/10.1016/bs.semsem.2016.11.001
  6. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, "Recent Progress and Future Prospects of AlGaN-Based High-efficiency Deep-ultraviolet Light-emitting Diodes," Japanese Journal of Applied Physics, 53(10), 100209 (2014). https://doi.org/10.7567/jjap.53.100209
  7. M. Jo, N. Maeda, and H. Hirayama, "Enhanced Light Extraction in 260 nm Light-emitting Diode with a Highly Transparent p-AlGaN Layer," Applied Physics Express, 9(1), 012102 (2015). https://doi.org/10.7567/APEX.9.012102
  8. M. Kneissl and J. Rass, III-Nitride Ultraviolet Emitters, Springer (2016).
  9. M. Shatalov, W. Sun, R. Jain, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, G. A. Garrett, and L. E. Rodak, "High Power AlGaN Ultraviolet Light Emitters," Semiconductor Science and Technology, 29(8), 084007 (2014). https://doi.org/10.1088/0268-1242/29/8/084007
  10. U. Kaufmann, P. Schlotter, H. Obloh, K. Kohler, and M. Maier, "Hole Conductivity and Compensation in Epitaxial GaN: Mg Layers," Physical Review B, 62(16), 10867 (2000). https://doi.org/10.1103/physrevb.62.10867
  11. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-type Conduction in Mg-doped GaN Treated with Low-energy Electron Beam Irradiation (LEEBI)," Japanese Journal of Applied Physics, 28(12A), L2112 (1989). https://doi.org/10.1143/JJAP.28.L2112
  12. S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen, and K. H. Huang, "Acceptor Activation of Mg-doped GaN by Microwave Treatment," Applied Physics Letters, 78(3), 312 (2001). https://doi.org/10.1063/1.1340864
  13. Y. J. Lin, W. F. Liu, and C. T. Lee, "Excimer-laser-induced Activation of Mg-doped GaN Layers," Applied Physics Letters, 84(14), 2515 (2004). https://doi.org/10.1063/1.1695436
  14. S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal Annealing Effects on p-type Mg-doped GaN Films," Japanese Journal of Applied Physics, 31(2B), L139 (1992). https://doi.org/10.1143/JJAP.31.L139
  15. S. W. Bang, H. Kim, H. Bae, J. W. Ju, S. J. Kang, and J. S. Ha, "Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN(in Kor.)," J. Microelectron. Packag. Soc. 24 (4), 59 (2017). https://doi.org/10.6117/KMEPS.2017.24.4.059
  16. N. Posthuma, S. You, H. Liang, N. Ronchi, X. Kang, D. Wellekens, Y. Saripalli, and S. Decoutere, "Impact of Mg Out-diffusion and Activation on the p-GaN Gate HEMT Device Performance," 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) 95 (2016).
  17. Y. L. Chang, M. Ludowise, D. Lefforge, and B. Perez, "Study of Mg Diffusion During Metalorganic Chemical Vapor Deposition of GaN and AlGaN," Applied Physics Letters, 74(5), 688 (1999). https://doi.org/10.1063/1.122988
  18. T. Y. Lee, M. S. Kim, E. S. Ko, J. H. Choi, M. G. Jang, M. S. Kim, and S. Yoo, "Properties of High Power Flip Chip LED Package with Bonding Materials (in Kor.)," J. Microelectron. Packag. Soc., 21(1), 1 (2014). https://doi.org/10.6117/KMEPS.2014.21.1.001
  19. Y. Xi and E. F. Schubert, "Junction-temperature Measurement in GaN Ultraviolet Light-emitting Diodes Using Diode Forward Voltage Method," Applied Physics Letters, 85(12), 2163 (2004). https://doi.org/10.1063/1.1795351
  20. M. H. Chang and M. Pecht, "Assessment Methodology of Junction Temperature of Light-emitting Diodes (LEDs)," Journal of the Microelectronics and Packaging Society, 23(3), 7 (2016). https://doi.org/10.6117/KMEPS.2016.23.3.007
  21. J. I. Shim and D. S. Shin, "Measuring the Internal Quantum Efficiency of Light-emitting Diodes: Towards Accurate and Reliable Room-temperature Characterization," Nanophotonics, 7(10), 1601 (2018). https://doi.org/10.1515/nanoph-2018-0094
  22. D. Emin, "Phonon-assisted Jump Rate in Noncrystalline Solids," Physical Review Letters, 32(6), 303 (1974). https://doi.org/10.1103/PhysRevLett.32.303
  23. D. C. Look, D. Reynolds, W. Kim, O. Aktas, A. Botchkarev, A. Salvador, and H. Morkoc, "Deep-center Hopping Conduction in GaN," Journal of Applied Physics, 80(5), 2960 (1996). https://doi.org/10.1063/1.363128
  24. J. S. Kwak, O. H. Nam, and Y. Park, "Temperature-dependent Contact Resistivity of the Nonalloyed Ohmic Contacts to p-GaN," Journal of Applied Physics, 95(10), 5917-5919 (2004). https://doi.org/10.1063/1.1691178
  25. A. Armstrong, G. Thaler, and D. Koleske, "Deep Level Investigation of p-type GaN Using a Simple Photocurrent Technique," Journal of Applied Physics, 105(4), 043712 (2009). https://doi.org/10.1063/1.3081650