• Title/Summary/Keyword: Interior permanent magnet synchronous motor

Search Result 364, Processing Time 0.029 seconds

Inductance Measurement of Interior Permanent Magnet Synchronous Motor in Stationary Frame of Reference

  • Lee, Geun-Ho;Choi, Woong-chul;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • An inductance measurement method for interior permanent magnet synchronous machine (IPMSM) is proposed in this paper. In this method, the motor is measured at standstill condition, and only a 3-phase voltage source, an oscilloscope and a DC voltage source are required. Depending on the deductive dq-axis voltage equations in the stationary frame of reference, the dq-axis inductances at different current magnitude and vector angle can be calculated by the measured 3-phase voltages and currents. And hence, the saturation and cross-magnetizing effect of the inductances are measurable. This paper introduces the principle equations, experiment setup, data processing, and results comparison on the concentrated-winding and distributed-winding IPMSMs.

Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor according to Pole Arc Ratio (극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석)

  • Lee K. J.;Kim K. C.;Lee J. I.;Kwon J. L.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.758-760
    • /
    • 2004
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

  • PDF

Study of the Reduction of Torque Ripples for Multi-pole Interior Permanent Magnet Synchronous Motors using Rotor Saliency (회전자 돌극 설계를 이용한 다극 매입형 영구자석 동기전동기의 토크리플 저감 연구)

  • Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6270-6275
    • /
    • 2014
  • The paper reports an improvement method on torque ripples of multi-pole interior permanent magnet synchronous motor (IPMSM) applied to a traction motor for hybrid electric vehicles. In the case of multi-pole IPMSM, the magnetic flux generated by a permanent magnet tends to leak through the bridge of the rotor without a link with stator windings. The slit design on the rotor surface was proposed to reduce torque rippling and increase the output power by reducing the leakage flux. Two design parameters for the slit are suggested for optimal design using the response surface method. As an analysis method, the 2D finite element method (FEM) was applied to consider magnetic saturation effect.

A Study on Inductance Calculation of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 인덕턴스 산정에 관한 연구)

  • Kim, Sung-Il;Lee, Suk-Hee;Hong, Jung-Pyo;Lee, Ji-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.745-746
    • /
    • 2006
  • The purpose of this paper is to discuss the reasons creating the difference between inductances calculated and measured in the interior permanent magnet synchronous motor designed for the traction. Moreover, the method applied to estimate the inductance is introduced in this paper.

  • PDF

Sensorless Control for a Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시 무효전력을 이용한 IPM모터의 센서리스 제어)

  • Joung, Woo-Taik;Kang, Hyung-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1447-1449
    • /
    • 2005
  • An interior permanent magnet synchronous motor(IPMSM) is receiving increased attention for many industrial applications because of its high torque to inertia ratio, superior power density, and high efficiency. This paper presents algorithm for speed sensorless vector control based on an Instantaneous Reactive Power. Effectiveness or algorithm is confirmed by the experiments.

  • PDF

Comparison of Dynamic Characteristics of the tine Start Permanent Magnet Motor and the Induction Motor

  • Yang, Byoung-Yull;Kwon, Byung-Il;Lee, Chul-Kyu;Woo, Kyung-Il;Kim, Byung-Taek
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.90-94
    • /
    • 2002
  • The line start permanent magnet (LSPM) motor has been developed facilitate to the design of the synchronous motor. The rotor of this motor is composed of interior permanent magnets and aluminum bars instead of rotor windings. It is difficult to predict the performance characteristics accurately, because many characteristics are produced by the aluminum rotor bars and the permanent magnets. Therefore, in this paper the dynamic characteristics of the LSPM motor are described and compared via the time-stepped finite element method with those of the cage-type induction motor to find the characteristics of the permanent magnets and the rotor bars in the LSPM motor.

Design and Experimental Verification of an Interior Permanent Magnet Motor for High-speed Machines (고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 실험적 검증)

  • Kim, Sung-Il;Lee, Geun-Ho;Lee, Chang-Ha;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.306-310
    • /
    • 2010
  • On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet synchronous motors have a number of merits such as high efficiency and high power density. Therefore, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted permanent magnet synchronous motor (SPMSM) of them is mainly used as a high-speed machine. However, the motor has a fatal flaw due to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the SPMSM. Thus, in this paper, an interior permanent magnet synchronous motor (IPMSM) is applied in order to drive the air-blower of FCEV instead of the SPMSM, and the experimental results of two models are compared to verify the capability of the IPMSM for high-speed applications.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Jung, Seung-Hwan;Choy, Ick;Cho, Whang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of Interior Permanent Magnet Synchronous Motor (IPMSM). First, in order to improve the performance of speed tracking, a nonlinear back-stepping controller is designed. In addition, since it is difficult to achieve the high quality control performance without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. Finally, for the efficiency of power consumption of the motor, controller is designed to operate motor with the minimum current for the required maximum torque. The proposed controller is tested through experiment with a 1-hp Interior Permanent Magnet Synchronous Motor (IPMSM) for the angular velocity reference tracking performance and load torque volatility estimation, and to test the Maximum Torque per Ampere (MTPA) operation. The result verifies the efficacy of the proposed controller.

Numerical Investigation on Permanent-Magnet Eddy Current Loss and Harmonic Iron Loss for PM Skewed IPMSM

  • Lim, Jin-Woo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • This paper presents the characteristics of PM eddy current loss and harmonic iron loss for PM step-skewed Interior Permanent Magnet Synchronous Motor (IPMSM) with concentrated windings and multi-layered PM under the running condition of maximum torque per ampere (MTPA) and flux-weakening control. In particular, PM eddy current loss and harmonic iron loss in IPMSM have been numerically computed with three-dimensional Finite Element Analysis (3D FEA), whereby IPMSM with concentrated windings and multi-layered PM has been designed to identify the optimized skew angle contributing to the reduced PM eddy current loss and torque ripples, while maintaining the required average torque. Furthermore, numerical investigation on PM eddy current loss and iron loss at MTPA and flux-weakening control has been carried-out in terms of PM step-skew.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.