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ABSTRACT

In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely;
surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor
(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss
minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to
achieve loss minimization at different speeds and load torque values. Data for training the NNC are obtained through off-
line simulations of SPMSM and IPMSM at different operating conditions. Accuracy and fast response of each NNC is
proved by applying sudden changes in speed and load and tracking the NNC output. The drives’ efficiency obtained by
flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying
the angle of advance “¢” of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at different
values of ¢, derived to be function of speed and load torque. A NN is also designed, and trained to vary ¢ following the

derived control law. The accuracy and fast response of the NN controller is also proved.
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1. Introduction

Permanent magnet synchronous motors (PMSM) are
progressively replacing dc motors in applications that
require variable speed drives. The PMSM offers several
advantages, namely; a high torque—to-inertia ratio and an
excellent power factor, since the copper losses are
confined to the stator. In addition, for the same delivered
mechanical power, a PMSM needs a smaller line current
value, which is favorable for the design of the electronic
power converter feeding this drive.
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These advantages make the PMSM attractive for
industrial application, as well as in electric vehicles.
However, the need to save energy still exists to develop an
efficient drive. The main efforts for higher efficiency are
focused on improvement of materials and optimization of

. However, efficiency can also be

design strategies
improved by intervening in the operational principle of
motors. Such methods can be implemented on adjustable
speed drives fed through an inverter. Several control
methods have been proposed to minimize the losses of
PMSM drives™). The proposed method to specify the loss
minimization condition for surface and interior PMSM
drives in [2] is complicated and its implementation based
on the knowledge of machine parameters. In [4], loss
optimization is achieved using a fuzzy table within a fuzzy
controller. In [5], air-gap flux weakening algorithm is
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proposed for loss optimization, but the stator resistance
was neglected while deriving the optimum voltage to
frequency ratio.

Increasing drive efficiency by maximizing the
generated torque was investigated in [6-7]. In [6] an
equation relating the optimum angle of advance of the
PWM inverter feeding the drive was derived as a function
in the speed only, i.e. load effect was not included. In [7],
the load was considered but without suggesting a method
for implementation.

In the previously described work, no attempt was done
to apply Neural Network (NN) controllers for maximum
efficiency operation of PMSM drive. However NN was
applied for position control of PM servo drives™, for
tracking of PM synchronous generator parameters”, or for
speed control of permanent magnet motors!',

In this paper, a loss minimization technique 1is
developed to minimize copper and iron losses in both
surface type permanent magnet synchronous machine
(SPMSM) and

synchronous machine (IPMSM) drives. The proposed

interior type permanent magnet
technique is based on the air-gap flux weakening, where
the value of the d-axis stator current component that leads
to minimum losses is first derived for IPMSM and
SPMSM drives. To achieve fast response with minimum
losses within the operating range, flux weakening is
implemented using neural networks (NN). The advantages
of the NN lie in its learning character, as well as in its
ability to deal with nonlinearities. A three-layer feed-
forward NN is

minimization model of the investigated drives. The

designed to implement the loss
accuracy and fast response of the proposed controller is
tested by applying sudden changes in speed and torque,
then examining the corresponding change in stator current.
" Also, another scheme is proposed for maximizing the
efficiency of the PMSM drive, when setting the d-axis
stator current component to zero, to prevent
demagnetization of the permanent magnet, while varying
the angle of advance “¢” of the PWM inverter supplying
the PMSM drive. The value of ¢ that allows maximum
efficiency is derived as function of speed and load, and a
NN controller is designed and tested to implement this
scheme. The accuracy and fast response of the proposed

controller is tested by applying sudden changes in speed

and torque, then examining the corresponding change in
inverter angle.

2. Loss Minimization Model of Interior PMSM

The steady state model of the IPMSM is derived from
the d and g-axes per-phase equivalent circuit shown in Fig

1,[17:

Vg = Rsig + @y Lgiyg + oA (1)

Vi = Riig — 0,Lyiog 2)
The electromagnetic torque is given by:

T, = 15P| Agg + (Ly = Ly Viodiog | (3)
And the equation for motor dynamics is:

T,=T, +Bo,+Jdo,/dt 4)

The main losses of the PMSM are the copper and iron
losses. Referring to the general equivalent circuit of the
PMSM given in Fig.1, the copper losses are given by:

Ry = Rs'i(% + R i; (5)

While the iron losses Pfe are given by:
P =g A3 IR, ©)

where, Ao is the air gap flux.

ig Ry Log wquioq
=
- +
R
V4
Iq Ry qu wsLdiod

. O

1 ~ | wgh

Fig. 1. Equivalent Circuit for PMSM in the d and q axes.
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Equation (6) could be written as:
Pfe:w%[(l"'[‘d iod)2+(Lq ioq)2]/Rc (7)

Neglecting harmonic losses, which are indirectly
controlled by flux weakening, the total losses are Pcu and
Pfe. For a given torque, Pcu and Pfe are functions of iy
Minimum losses satisfy (£, + Pp)/Oipg = 0F /dipy =0 ,

Hence:

lod [Rs + (0)3 L%i /Rc):l +
iog 0 fog /oa| Ry + (@7 Ly /R) |+ (@] A L4/R)
®

OP, /iy =2

From the electric torque equation (3), the current i, is
given by:

iog =To /L5 P[A+(Ly ~1,) iy | 9

Hence 0Oiyq /0iqq is derived as:

Bigg/Bigg =—{ (La ~ Ly )T, /15 P[4+ (L, - Lq)iodﬂ2 (10)

Substituting (10) into (8) and equating the result to zero,
gives the following expression for the optimum d-axis
stator current id,, that leads to minimum losses at a given

steady state speed and torque:

I:(Rs R)+(@} -Lf])}/ .
[(RS.RCM)SZ.L@)] . 1)

_{[,1.0,3 LG [ Ry Re+ wszLﬂ}

lgop =1.5P- LT -

where, LT =(L;~1,)/1, .

Equation (11) gives the optimal d-axis component of
stator current, which can be applied in current-controlled
schemes. Loss minimization condition for voltage
controlled schemes is obtained by substituting (11) into

equations (1) and (2) and using the supply voltage V; as:

Ve=\Vi+v} (12)

To prove that the losses are minimized as speed and
load varies, the total losses are plotted versus Vs at
different speeds and constant torque as shown in Fig. 2,
and at variable load torque and constant speed in Fig. 3.

It is worth notice that the voltage value at which
minimum losses occurs differs at different speeds, and is
lower at lower values of load torque.
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Fig. 3. Power Loss Versus Stator Voltage at Variable Load and
Constant Speed.

3. Network Controller for Loss-Minimization
in IPMSM

3.1 Control Scheme

Among the advantages of neural networks (NN) are the
ability to learn nonlinear mapping, the rapidity of response,
and robustness. The quick response time of the NN makes
their computation time almost negligible. All these
characteristics make the NN suitable for application in



Minimization of Losses in Permanent Magnet Synchronous Motors using Neural Network 223

Vae DC volt
i*d Vt] Va
NNI —p v Vector Vi, PWM | — 7 PMSM
Converter - Rotator Inverter N
? j A Va V,
iy
- T 14 ip
Pl e f\“ N Te Vector
Calculation - Rotator |} .
T-i— 'q Iy
|T* ) *
e T I
O d/dt < Position

Fig. 4. Control System for Loss Minimization in IPMSM Drives

loss minimization strategy, especially in the case of the
interior type PMSM due to the complexity of the derived
loss model given by equation (11). The control scheme to
implement loss minimization is shown in Fig. 4. In such
scheme, a PI controller is used to calculate i*; from the
difference between the torque command and the actual
torque. The inputs to the proposed NN are i*; and the rotor
speed wr. The output of the NN is id,,, which is used with
i*; to calculate the 3-phase currents, in current controlled
schemes, or the 3-phase voltages in the voltage-controlied
scheme.

3.2 Neural Network Controller for IPMSM

The type of neural network (NN) developed in this
work is the multi-layer perceptron. The number of
elements in the hidden layer is arbitrarily chosen
depending on the complexity of the mapping being learnt.
In order to introduce non-lincarity into the network, a
hyperbolic-tangent transfer function “tanh”, is used in
input and hidden layers’ elements. All elements in the
output layer have linear transformations. The Levenberg-
Marquadet algorithm is used to train (adjust the weights
and biases) of the NN such that the sum squared error
between actual network outputs and corresponding desired
outputs is minimized. Training is done according to an
existing input/output pattern. This pattern is obtained from
the simulation results of the described loss minimization
control strategy, i.e. off- line training. This training

Sensor

method has the merit of fast learning. Once the NN has
been trained, the network output 0i is computed from
(nx1) input vector X according to [12]:

&; = W2.tanh(W1.X+B1)+B2

where, W2 denotes matrix of connecting weights from
hidden to output layer, W2 denotes matrix of connecting
weights from input to hidden layer. For a hidden layer
with “m” elements, B2 and B1 denote the “I1x1” and
“mx1” bias vectors respectively. The task of training is to
determine the matrices W1, W2 and bias vectors B1, B2.
After many trials, a 3-layer feedforward NN with two
input neurons, 2- hidden layer neurons, and one output
neuron gave the required error goal after few epochs. The
sum squared error as function of training epochs is shown
in Fig. 5. The trained output of NN, defined as NN; is
compared with idop calculated from the condition of
minimum losses, and the results given in Fig. 6 as function
of rotor speed. The slight difference between the two
values of current proves the accurate tracking of the
current value required for loss minimization. The qg-axis
current component, as calculated from the PI controller, is
shown in Fig. 7 versus rotor speed. The accuracy of NN; is
further proved in Fig. 8, where the minimum power loss
calculated from id,, is compared with power loss resulting
due to application of NNj. As shown the error is less than
0.001% (0.1/118.9), i.e. application of NN leads to
efficient operation.
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Fig. 10. Difference Between Calculated and Actual Power Loss

when Applying NNI at a Step Change in Load Torque.

In order to verify the fast response of the established

NN;, loss minimization controller, sudden step change in

the drive speed is imposed at constant load torque, and the

calculated power loss at this operating point is plotted

versus time in Fig. 9(a), while the existing power loss after
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applying NN; controller is plotted in Fig. 9(b) for clarity.
The corresponding fast change in the output of NN as the
speed changes proves the fast response of the neural
network output, which assures that minimum losses are
obtained at different operating conditions. This fact is
further proved by applying a step change of load torque
and plotting the expected power loss with that obtained
after applying NN,. Results shown in Fig. 10 assures the
fast response of the designed NN.

4. Loss Minimization Model of
Surface SPMSM

In the case of SPMSM drive, Lq =L =Ls, where L; is the
stator inductance. Hence, the iron loss equation (7)
reduces to

-2 SN2
P, = w? |i(/7,+LS-10d) +(LS-10q)} IR, (13)
and the electric torque reduces to:
T,=1.5-P-A-ipg (14)

Adding copper and iron losses and differentiating with
respect to iod gives:

O, 1Bigg =2 Ripa +(L; @} 1)/ R +(@} I ip)R. | (15)

Equating (15) to zero leads to the following expression
for the optimum d-axis current at a given speed and

torque:

igop = (Ls @f A/(RyR, +ao} LY) (16)

5. Neural Network Controller for
Loss-Minimization in SPMSM

5.1 Control Scheme

Due to the simpler expression for optimal d-axis current
given in (16), and the independency of idop on the g-axis
current component, the PI controller used with IPMSM
drive is canceled. Instead the g-axis current is directly
calculated from the command torque, which is used as one
of the inputs of the neural network controller for SPMSM
drive (NNS). The simpler control scheme is shown in a
block diagram in Fig. 11.

5.2 Neural Network Description

For fast and robust application of loss minimization
technique within the operating speed range, an off line
trained feed-forward neural network, defined as NNS, is
designed for loss minimization in surface PMSM. The
inputs to the NNS are the drive speed, and the load torque
(which determines the q-axis component of the stator
current). The outputs of the network are 1*; and the
optimal value of d-component of stator current idop. The
input/output pattern used to train NNg is obtained from the
simulation results of the described loss minimization
control strategy. A 3-layer NN with two input neurons, 2-
hidden layer neurons, and two output neurons gave the
required error goal after few epochs. The sum squared
error as function of training epochs is shown in Fig. 12.
The value of d- axis current output from NNj is compared
with id,, calculated from the condition of minimum losses,
and the results given in Fig. 13 as function of rotor speed.
The slight difference between the two values of current
proves the accurate tracking of the current value required
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Fig. 11. Control Scheme for Loss Minimization in SPMSM Drives.
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for loss minimization.

In order to verify the fast response of the established
NNjs loss minimization controller,. a step change of load
torque is applied to the SPMSM, and NNg output idop
plotted in Fig. 14. Results proves the fast response of the
designed NNs. This fact is further proved by applying a
sudden step change of 30 rad/sec to the speed command at
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Fig. 15. NNS Output at Step Change in Speed.

constant load torque, and idop output plotted versus time
in Fig. 15. The corresponding fast change in the output of
NN;s as the speed changes proves the fast response of the
neural network output, which assures that minimum losses
are obtained at different operating conditions.

6. Maximum Efficiency Operation At id=0

6.1 Equation Derivation

To prevent the demagnetization of the permanent
magnets, the d-component of the stator current is set to
zero, and another approach is used to allow the PMSM to
operate with minimum winding losses.

This approach depends on variation of the inverter
angle as the speed and load varies to achieve minimum
losses!"'). To determine this optimum angle in an
analytical manner, igy is set to zero in equations (1)-(3)

leading to the following voltage and torque equations:

Vy=Vicosp=Roip, +og A an
Vy=-Vising=-~a; L i, (18)

The electromagnetic torque is given by:
T,=15-P-L-ipy (19)

where, L = L, for IPMSM drive, and L =L for SPMSM
drive.

It is clear that with this constraint, and for steady state
operation at a given load torque, the quadrature axis
current can be calculated from (19), and used to optimize



Minimization of Losses in Permanent Magnet Synchronous Motors using Neural Network 227

the inverter angle. From (17) and (18) it is given by:
Pop = tan”! [(a)s L ipg ((Ryidpg +a)s/1)J (20)

To study the range of the optimum inverter angle gop as
the rotor speed is varied, @, is plotted versus speed at
different values of load torque in Fig. 16. It is clear that
the optimum inverter angle is in the region of 0.5 to 2.5
degrees'™ within the operating speed range.

To prove the effect of the inverter angle of advance on
the drive efficiency, the efficiency and electromagnetic
torque for ¢=0, and for ¢=¢q,, are plotted versus speed in
Fig. 17. Results show that a much higher torque and a
higher efficiency are obtained when ¢ is varied with speed

to follow the values of ¢, as given in (20).

25
LS > TL4
2»
E
e
=l nems
s e — T
z - TL3 > TL2
S
2 TL2 > TL
<C S
0s5F -~
L
o .
) 50 100 150 200

Mechanical Speed (rpm)
Fig. 16. Variation of Optimal Inverter Angle with Speed at
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6.2 Comparison Between Maximum Efficiency
Operation Schemes

A comparison is done between the values of efficiency
obtained by flux weakening technique, and that obtained
by varying the inverter angle of advance in SPMSM. Fig.
18 shows the developed torque and efficiency with loss
minimization scheme (Tel and effl), and de torque and
efficiency for optimum inverter angle operation (Te2 and
eff2). It is concluded that while the efficiencies are nearly
equal, the developed torque is slightly higher for the case
of optimum inverter angle operation. Therefore, since the
two investigated techniques for maximum efficiency
operation gave same results, setting the d-axis current
component to zero while varying the optimum angle of
advance might be more economic to implement, and more
safe from the point of view of magnet demagnetization.
Flux weakening is better used for high speed operation of
PMSM drives.

-~ =Maximum Possible Torque |

__=Torque at Minumum Losses

1

O'Géo 0 100 10 120 130 140 150 160

Motor Speed (rad/sec.)
Fig. 18. Torque and Efficiency with Loss minimization
Technique (Tel and effl), and Torque and Efficiency for
Optimal Inverter Angle Operation (Te2 and eff2).

6.3 Neural Network Impiementation

For fast and robust application of optimum inverter
angle within the operating speed range, an off line trained
neural network, defined as NN,, is designed. The inputs to
NN, are the drive speed, and the load torque (which
determines the g-axis component of the stator current).
The output of the network is the optimal value of the
inverter angle of advance @d,,. The input/output pattern
used to train NN, is obtained from the simulation results
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given in the previous section. A 3-layer NN with two input
neurons, 2- hidden layer neurons, and one output neuron
gave the required error goal after few epochs. In order to
verify the fast response of the established NN, maximum
efficiency controller, a step change of 0.2 N.m .in load
torque is applied to the SPMSM, and NN, output
(optimum inverter angle), as well as the calculated inverter
angle are plotted in Fig. 19. Results prove the fast
response of the designed NN 4.

7.Conclusion

In this paper, loss minimization problem of interior-type
permanent magnet synchronous motor (IPMSM) drive,
and surface-type permanent magnet synchronous motor
(SPMSM) drive has been investigated. The proposed
method is based on flux weakening, where an expression
is derived for the d-axis current component leading to
minimum copper and iron losses for both drives. This is
followed by designing a neural network controtler (NNC)
for each drive, to achieve loss minimization at different
operating points. Data for training the NNC is obtained
through off-line simulations of IPMSM and SPMSM at
different operating conditions. The accuracy and fast
response of each NNC is proved by applying sudden
changes in speed and load and tracking the NNC output.

Also the PMSM drives efficiency has been investigated
when setting the d-axis current component to zero, while
varying the angle of advance “ ¢@” of the PWM inverter
supplying the drive. An expression giving the value of ¢
that results in maximum efficiency at different operating
points is derived. This is followed by designing a neural

network to vary ¢ following the derived control law. The
accuracy and fast response of the NN controller is also
proved.

Comparison is done between the drive efficiency
obtained with flux weakening, and the drive efficiency
obtained by setting “i;=0" control. Results proved that the
two methods lead to equal efficiencies. This result are in

favor of the “iz=0" control, since it prevents magnet

demagnetization that may occur due to any maloperation
of the control system.
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Appendix

IPMSM parameters
900watt, R=4.3 3, L.d=0.027 H, L=0.067 H.,
V=250V, 2P=8 poles, 2=0.232 web,

SPMSM parameters
400 watt, Rs=3 O, L=0.0121 H,
Va=100V, 2P=4 poles, 1=0.083 web.
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