고속회전기 적용을 위한 매입형 영구자석 전동기의 설계 및 실험적 검증

논 문 59-2-13

Design and Experimental Verification of an Interior Permanent Magnet Motor for High-speed Machines

김 성 일^{**}・이 근 호^{**}・이 창 하^{*}・홍 정 표^{*} (Sung-Il Kim・Geun-Ho Lee・Chang-Ha Lee・Jung-Pyo Hong)

Abstract – On account of small size and light weight, a high-speed machine is regarded as a key technology for many future applications of drive systems. In high-speed applications, permanent magnet synchronous motors have a number of merits such as high efficiency and high power density. Therefore, they are suitable for driving the air-blower of a fuel cell electric vehicle (FCEV) where space and energy savings are critical. Particularly, a surface-mounted permanent magnet synchronous motor (SPMSM) of them is mainly used as a high-speed machine. However, the motor has a fatal flaw due to a retaining can to maintain the mechanical integrity of a rotor assembly. The can results in the increase of magnetic air-gap length in the SPMSM. Thus, in this paper, an interior permanent magnet synchronous motor (IPMSM) is applied in order to drive the air-blower of FCEV instead of the SPMSM, and the experimental results of two models are compared to verify the capability of the IPMSM for high-speed applications.

Key Words: Air-blower, FCEV, High-speed, IPMSM, SPMSM

1. 서 론

최근 구동시스템의 소형화 및 경량화를 위해 고속회전기 를 적용하는 사례가 증가하고 있다. 고속을 요구하는 시스 템에서 증속 기어를 사용하지 않고 고속회전기를 직접 적용 할 경우 기어에서 발생하는 손실 및 유지비용을 줄일 수 있 으며 구조의 단순화로 인해 시스템 신뢰성을 향상시킬 수 있다. 또한 동력을 전달하기 위한 추가적인 장치 없이 고속 회전기에 의한 직구동이 가능하므로 소음을 상당히 저감할 수 있는 장점을 지니게 된다 [1]. 하지만 고속회전기의 경우 기계적인 안전성 및 회전자 냉각 등을 위해 일반 전동기 보 다 큰 기계적 공극을 가지게 된다. 따라서 출력밀도가 높고 역률이 비교적 좋은 영구자석 전동기의 적용은 고속회전기 를 보다 소형화 하는데 있어 유리하게 작용된다. 특히 표면 부착형 영구자석 동기전동기(Surface-mounted Permanent Magnet Synchronous Motor, 이하 SPMSM)의 경우 비교적 간단한 자기회로 설계 및 제어 알고리즘 때문에 대부분의 고속회전기에 적용되고 있는 추세이다. 하지만 SPMSM의 경우 영구자석 및 회전자 형상을 유지하기 위해 필요한 retaining can으로 인해 자기적인 공극이 증가되어 동일한 기자력 확보를 위해서는 영구자석 또는 코일의 사용량이 늘 어나게 될 뿐만 아니라 슬롯 고조파 성분에 의한 와전류 손

*	정	회	원	:	현대자동차	환경기	술연구소	선임연구원
---	---	---	---	---	-------	-----	------	-------

** 정 회 원 : 한양대학교 자동차공학과 박사과정

 ★ 교신저자, 펠로우회원 : 한양대학교 자동차공학과 교수 E-mail : hongjp@hanyang.ac.kr 접수일자 : 2009년 8월 25일 최종완료 : 2009년 12월 17일

306

실이 can에서 발생하게 된다 [2], [3]. 따라서 본 논문에서는 기존 연료전지 차량의 공기블로워(Air-blower) 구동을 위해 사용되고 있는 SPMSM을 대신하여 매입형 영구자석 동기 전동기 (Interior Permanent Magnet Synchronous Motor, 이하 IPMSM)의 설계를 제안하였으며 그 두 모델에 대한 실험을 통해 고속회전기 적용에 있어 매입형 영구자석 전동 기의 이점을 검토하였다.

2.본론

2.1 연료전지 차량의 공기블로워 구동용 전동기

그림 1에서와 같이 연료전지 차량에 적용되는 연료전지 시스템은 단지 전력을 발생시키는 연료전지 스택만으로 이 루어지는 것이 아니라 여러 주변 장치들로 이루어져 있다. 그 중 대표적인 장치로 스택에서 원활한 반응이 일어나게 하기 위한 공기공급 장치가 있다. 연료전지 시스템에서는 내연기관과 같이 피스톤의 행정운동에 의해 공기를 자연스 럽게 흡입하는 기능이 없기 때문에 공기를 강제로 불어 넣 어 주는 장치가 필요하며 대개 전동기로 구동되는 공기블로 워가 쓰이고 있다. 그러나 현재 산업용으로 개발되어 사용 되고 있는 공기공급기는 운전영역(유량 및 토출압력), 무게, 소음 및 응답성 등에서 차량용으로 적용하기에 부적합할 뿐 만 아니라 연료전지 시스템에서 발생되는 최대 출력의 20% 까지 사용하게 되므로 운전 효율이 매우 중요하다. 이외에 도 차량의 장착성을 고려하여 작게 만드는 것이 필수적이며 이를 위해 공기공급기의 회전수가 분당 수 만회에 이르도록 설계되고 있다. 따라서 공기블로워 구동용 전동기의 경우 고속, 고효율화가 필수적이다. 표 1에서는 본 연구에서 다루 고자 하는 공기블로워 구동용 전동기의 요구사양을 나타내 었다.

亜	1	공기블로워	구동용	전동기의	의 요구사잉
Table	1	Motor speci	fications	for the	air-blower

항 목	사 양
DC link 전압	240V
정격출력	8kW
입력전류	40A
정격속도	40000rpm

그림 1 차량용 연료전지의 운전 장치 Fig. 1 BOP(Balance of Plant) of fuel cell for vehicles

2.2. 매입형 영구자석 전동기의 등가회로 및 특성식

그림 2는 철손을 고려한 IPMSM의 d-q축 등가회로를 나 타내고 있으며 이를 바탕으로 한 전압 및 토크방정식은 아 래와 같다 [4].

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} R_a & 0 \\ 0 & R_a \end{bmatrix} \begin{bmatrix} i_{od} \\ i_{oq} \end{bmatrix} + \left(1 + \frac{R_a}{R_c}\right) \begin{bmatrix} v_{od} \\ v_{oq} \end{bmatrix} + p \begin{bmatrix} L_d & 0 \\ 0 & L_q \end{bmatrix} \begin{bmatrix} i_{od} \\ i_{oq} \end{bmatrix}$$
(1)

$$\begin{bmatrix} v_{od} \\ v_{oq} \end{bmatrix} = \begin{bmatrix} 0 & -\omega L_q \\ \omega L_d & 0 \end{bmatrix} \begin{bmatrix} i_{od} \\ i_{oq} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega \psi_a \end{bmatrix}$$
(2)

$$T = P_n[\psi_a i_{oq} + (L_d - L_q) i_{od} i_{oq}]$$
(3)

여기서, v_d 와 v_q 는 d, q축 단자전압, i_{od} 와 i_{oq} 는 철손분 전 류를 제외한 d, q축 전류, R_a 와 R_c 는 전기자 권선 및 철손 저항, ψ_a 는 영구자석에 의한 쇄교자속, P_n 은 극쌍수, p=d/dt를 각각 나타낸다. 그리고 전압방정식의 제약조건으 로는 다음과 같다.

$$I_{a} = \sqrt{i_{d}^{2} + i_{q}^{2}} \le I_{am}, \quad V_{a} = \sqrt{v_{d}^{2} + v_{q}^{2}} \le V_{am}$$
(4)

여기서, I_{am} 과 V_{am} 은 각각 최대입력전류 및 전압을 나타 낸다.

그림 2 IPMSM의 d-q축 등가회로 Fig. 2 Equivalent circuits of IPMSM

2.3 매입형 영구자석 전동기의 제약조건 및 설계방향

본 논문에서 다루게 될 IPMSM은 표 1에 나와 있는 기본 사양을 만족시키면서 현재 연료전지 차량에 적용되고 있는 SPMSM과 비교하여 다음과 같은 제약조건을 바탕으로 설 계가 진행되게 된다.

·영구자석 사용량 저감 및 효율향상 ·고정자 형상 및 권선 방식 그리고 영구자석은 동일 ·회전자 크기 및 기계적 공극길이 동일 ·동등 수준의 전류밀도 및 점적률 유지

표 2는 SPMSM의 기본적인 형상치수 및 측정된 파라미 터를 보여주고 있다. 그 결과를 바탕으로 식 (1) 과 (3)에 나와 있는 방정식을 이용하여 위에서 언급된 조건들을 만족 시키기 위한 IPMSM의 역기전력 및 d축 인덕턴스 범위를 선정하였고 그 결과를 그림 3에 나타내었다 [5]. 이 때 철손 저항 및 기계손은 SPMSM의 그것과 동일하게 적용했으며 돌극비는 2.1로 가져갔다. 최종적으로 IPMSM의 설계방향은 그림 3에 표시되어 있는 설계 목표 영역을 만족시키는 것으 로 그 영역은 SPMSM과 동일한 성능을 확보하면서 영구자 석 사용량 및 자기적인 공극길이의 감소에 따른 역기전력과 인덕턴스의 범위를 나타낸다.

2.4 매입형 영구자석 전동기의 형상설계 및 구조해석

그림 3에 나와 있는 IPMSM의 설계 영역을 만족시키기 위해 다음과 같은 사항을 고려하였다.

- · 영구자석 사용량 저감 및 돌극비 확보를 위한 다층형 회 전자 구조
- ·균일한 응력 분산을 위한 영구자석의 원주 방향 구조
- ·누설 자속의 최소화를 위한 rib 및 flux barrier 구조

· 창 목	값
고정자 외경	88.0mm
회전자 외경	35.2mm
축 방향 길이	34.5mm
기계적 공극길이	2.0mm
영구자석 잔류자속 밀도	1.18T
상 저항	66.3m <u>Ω</u>
상 역기전력 (1000rpm)	1.898V

표 2 SPMSM의 형상치수 및 파라미터 Table 2 Dimension and motor parameters of SPMSM

그립 3 IPMSM의 파라미터 범위 Fig. 3 Parameter range of IPMSM

그림 4는 SPMSM 및 최종 설계된 IPMSM의 회전자 형 상을 보여주고 있으며 외경 및 축 방향 길이는 서로 동일하 다. 그림 5에서는 IPMSM 회전자의 기계적 강성을 알아보 기 위해 구조해석을 수행하였으며, 이 때 다음과 같은 해석 조건 및 가정을 두었다 [6].

·전기강관 물성치
: 밀도 7700kg/m³, 탄성계수 200GPa, 푸아송 비 0.3
·속도는 정상상태 조건
·온도 및 전자기적 힘에 의한 영향은 무시
·베어링 및 샤프트에 의한 변위 무시

구조해석 결과 회전자 코어에 작용하는 최대응력은 158MPa 이었으며 이 값은 전기강판의 항복강도인 300MPa의 약 50%에 해당하므로 충분한 기계적 강성을 확보하고 있음을 알 수 있다. 또한 그림 3에 주어진 역기전력 및 인덕턴스의 만족 여부를 확인하기 위하여 유한요소해석에 의해 산정된 결과를 그림 6에 나타내었다.

그림 4 SPMSM 및 IPMSM의 단면도

Fig. 4 Cross section of SPMSM and IPMSM

그림 5 IPMSM의 구조해석 (40000rpm) Fig. 5 Structural analysis of IPMSM (40000rpm)

Current angle [°] (b) 전류위상각에 따른 인덕턴스 및 돌극비 (40A)

그림 6 IPMSM의 파라미터 산정 결과 Fig. 6 Estimated parameters of IPMSM

2.5 특성비교 및 실험결과

공기블로워 구동을 위해 제작된 SPMSM 및 IPMSM의 형상을 그림 7에서 보여주고 있으며 그림 8과 그림 9는 각 각 부하실험을 위한 시험 장비들의 구성 및 역기전력 측정 결과를 나타내고 있다. 표 3은 영구자석 전동기의 등가회로 에 의한 특성해석 및 최종 설계결과를 비교하였으며 표 4에 서는 특정 부하에서의 특성해석 및 부하실험 결과를 나타내 고 있다. 이 때 특성해석 결과의 효율이 부하실험 결과보다 낮은 것을 확인할 수 있는데 이는 기계손의 측정 결과가 정 확하게 반영되지 못한데서 비롯된 것으로 판단되어 진다.

(a) SPMSM의 회전자 형상

(b) SPMSM 및 IPMSM의 고정자 및 조립형상

(c) IPMSM의 회전자 형상

- 그림 7 SPMSM 및 IPMSM의 제작형상
- Fig. 7 Configuration of fabricated SPMSM and IPMSM

그림 8 부하실험을 위한 시험장비 구성 Fig. 8 Testing apparatus for load experiment

그림 9 역기전력 측정결과 (1000rpm) **Fig. 9** Test result of Back-EMF (1000rpm)

표 3 공기블로워 구동용 각 전동기의 설계결과

Table 3 Design results of each motor for the air-blower

창 목	SPMSM	IPMSM
출력	8.9kW	8.1kW
토크	2.1Nm	1.9Nm
상 전압	86.9V	88.2V
전류	39.9A	39.9A
극 당 영구자석 vol.	10.6×103mm ³	5.0×103mm ³
전류밀도 (40A)	15.1A/mm ²	$15.1 \mathrm{A/mm}^2$
점적률	31.9%	35.0%

표 4 특성해석 및 측정결과

Table 4 Characteristic analysis and test results

	항 목	SPMSM	IPMSM
촉 정 결 과	토크	1.0Nm	0.96Nm
	상 전압	78.8V	74.2V
	전류	20.9A	25.8A
	के झे	89.2%	89.8%
	전류위상각	0°	20°
해 석 길 과	토크	1.0Nm	0.96Nm
	상 전압	79.8V	73.3V
	전류	21.5A	23.8A
	के हे	83.9%	85.3%
	전류위상각	0°	20°

3. 결 론

본 논문에서는 매입형 영구자석 전동기의 고속회전기 적 용을 위한 회전자 형상설계를 수행하였다. 그 결과 기존 연 료전지 차량의 공기블로워 구동을 위해 적용되고 있는 표면 부착형 영구자석 전동기에 비해 영구자석 사용량을 50%이 상 줄이면서도 설계 및 성능적인 면에서 크게 차이가 나지 않음을 실험을 통해 검증하였다. 따라서 회전자의 구조적인 설계만 고려한다면 고속회전기 적용에 있어 매입형 영구자 석 전동기는 영구자석 저감 및 retaining can을 제거함에 있 어 큰 이점을 지니게 된다. 참 고 문 헌

- A. Binder, T. Schneider, and M. Klohr, "Fixation of buried and surface-mounted magnets in high-speed PM synchronous machines," IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1031–1037, 2006.
- [2] H. W. Cho, S. M. Jang, and S. K. Choi, "A design approach to reduce rotor losses in high-speed permanent magnet machine for turbo-compressor," IEEE Trans. on Magnetics, vol. 42, no. 10, pp. 3521–3523, Oct. 2006.
- [3] A. M. EL-Refaie, M. R. Shah, R. Qu, and J. M. Kern, "Effect of number of phases on losses in conducting sleeves of surface PM machine rotors equipped with fractional-slot concentrated windings," IEEE Trans. Ind. Appl., vol. 44, no. 5, pp. 1522–1532, Sep./Oct. 2008.
- [4] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, "Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor," IEEE Trans. on Magnetics, vol. 42, no. 4, pp. 1303–1306, April 2006.
- [5] S. I. Kim, G. H. Lee, J. P. Hong, and T. U. Jung, "Design process of interior PM synchronous motor for 42-V electric air-conditioner system in HEV," IEEE Trans. Magn., vol. 44, no. 6, pp. 1590–1593, 2008.
- [6] E. C. Lovelace, T. M. Johns, T. A. Keim, and J. H. Lang, "Mechanical design considerations for conventionally laminated, high-speed, interior PM synchronous machine rotors," IEEE Trans. Ind. Appl., vol. 40, no. 3, pp. 806–812, May/June 2004.

김 성 일 (金 成 一)

1976년 12월 27일생, 2003년 창원대학교 전기공학과 졸업, 2005년 동 대학원 전기 공학과 졸업 (공학석사), 2007년 동 대학 원 전기공학과 박사수료, 2007년~현재 한양대학교 자동차공학과 박사과정

이 근 호 (李 根 浩)

1969년 4월 11일 생. 1993년 한양대학교 전기공학과 졸업. 1994년 동 대학원전기 공학과 졸업 (공학석사). 1994년~2002년 LG-OTIS 선임연구원. 2002년~현재 경 남도립남해대학 전기과 부교수. 2007년~ 현재 한양대학교 자동차공학과 박사과정

이 창 하 (李 昌 夏) 1975년 6월 13일생, 1999년 경북대학교 기계공학과 졸업, 2001년 서울대학교 대 학원 기계설계학과 졸업 (공학석사), 2001년~2005년 삼성테크원 파워시스템 연구소 재직, 2006년~현재 현대자동차

환경기술연구소 선임연구원

홍정 표 (洪 正 杵) 1959년 4월 17일생, 1983년 한양대학 교 전기공학과 졸업, 1985년 동 대학원 전기 공학과 졸업 (공학석사), 1985년~ 1990 년 LG정밀(주) 중앙연구소 주임연구원, 1990년~1992년 삼성전기(주) 종합연구 소 선임 연구원, 1995년 동 대학원 기공

학과 졸업 (공학박사), 1996년~2006년 창원대학교 전기공 학과 부교수, 2006년~2008년 한양대학교 기계공학부 부 교수, 2008년~현재 한양대학교 기계공학부 교수, 2002년 ~현재 IEEE Senior member