• Title/Summary/Keyword: Interfacial property

Search Result 234, Processing Time 0.024 seconds

Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • This study aimed at exploring the effect of presoaking degree of lightweight aggregate (LWA) on the fresh and hardened properties of concrete. Two series (i.e., Series A and Series B) of concrete mixes that were made of LWA with different moisture states were prepared. The presoaking degree of LWA was divided into three types: oven dry state, 1 hour prewetted and 24 hours prewetted. For the Series A, the water content of the lightweight aggregate concrete (LWAC) mixes was adjusted in accordance with the moisture condition of the LWA. Whereas the amount of water added in the Series B mixes was deliberately not adjusted for the moisture condition of the LWA. Slump test, mechanical tests, interfacial transition zone microscopical tests and thermal conductivity test were carried out on the specimens of different concretes and compared with control normal-weight aggregate concretes. The test results showed that the effect of mixing water absorption by LWA with different moisture states was reflected in the fresh concrete as the loss of mixture workability, while in the hardened concrete as the increase of its strength. With the use of oven-dried LWA, the effect of reduction of water-cement ratio was more significant, and thus the microstructure of the ITZ was more compact.

Processing and mechanical property evaluation of maize fiber reinforced green composites

  • Dauda, Mohammed;Yoshiba, Masayuki;Miura, Kazuhiro;Takahashi, Satoru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.335-347
    • /
    • 2007
  • Green composites composed of long maize fibers and poly $\varepsilon$-caprolactone (PCL) biodegradable polyester matrix were manufactured by the thermo-mechanical processing termed as 'Sequential Molding and Forming Process' that was developed previously by the authors' research group. A variety of processing parameters such as fiber area fraction, molding temperature and forming pressure were systematically controlled and their influence on the tensile properties was investigated. It was revealed that both tensile strength and elastic modulus of the composites increase steadily depending on the increase in fiber area fraction, suggesting a general conformity to the rule of mixtures (ROM), particularly up to 55% fiber area fraction. The improvement in tensile properties was found to be closely related to the good interfacial adhesion between the fiber and polymer matrix, and was observed to be more pronounced under the optimum processing condition of $130^{\circ}C$ molding temperature and 10 MPa forming pressure. However, processing out of the optimum condition results in a deterioration in properties, mostly fiber and/or matrix degradation together with their interfacial defect as a consequence of the thermal or mechanical damages. On the basis of microstructural observation, the cause of strength degradation and its countermeasure to provide a feasible composite design are discussed in relation to the optimized process conditions.

The interfacial properties of th eanneled SiO$_{2}$/TiW structure (열처리된 SiO$_{2}$/TiW 구조의 계면 특성)

  • 이재성;박형호;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.117-125
    • /
    • 1996
  • The variation of the interfacial and the electrical properties of SiO$_{2}$TiW layers as a function of anneal temperature was extensively investigated. During the deposition of SiO$_{2}$ on TiW chemical bonds such as SiO$_{2}$, TiW, WO$_{3}$, WO$_{2}$ TiO$_{2}$ Ti$_{2}$O$_{5}$ has been created at the SiO$_{2}$/TiW interface. At the anneal temperature of 300$^{\circ}C$, WO$_{3}$ and TiO$_{2}$ bonds started to break due to the reduction phenomena of W and Ti and simultaneously the metallic W and Ti bonds started to create. Above 500$^{\circ}C$, a part of Si-O bonds was broken and consequently Ti/W silicide was formed. Form the current-voltage characteristics of Al/Sico$_{2}$(220$\AA$)/TiW antifuse structure, it was found that the breakdown voltage of antifuse device wzas decreased with increasing annealing temperature for SiO$_{2}$(220$\AA$)/TiW layer. When r, the insulating property of antifuse device of the deterioration of intermetallic SiO$_{2}$ film, caused by the influw of Ti and W.W.

  • PDF

Properties, Structure and Crystallization of Poly Lactic Acid/Zinc Oxide Pillared Organic Saponite Nanocomposites (폴리락틱산/산화아연 기둥구조의 유기사포나이트 나노복합체의 특성, 구조 및 결정화)

  • Zhen, Weijun;Sun, Jinlu
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.299-306
    • /
    • 2014
  • ZnO pillared saponite was synthesized via a microwave hydrolysis method. To enhance interfacial compatibility between zinc oxide (ZnO) pillared saponite and poly lactic acid (PLA), ZnO pillared organic saponite was prepared by intercalation modification of cetyltrimethylammonium bromide. Moreover, PLA/ZnO pillared organic saponite nanocomposites were prepared by melting processing. The microstructure analysis of PLA/ZnO pillared organic saponite nanocomposites showed that ZnO pillared organic saponite was exfoliated and homogeneouslydispersed in PLA matrix. The property results showed that ZnO pillared organic saponite improved the mechanical properties and thermal stabilities of PLA/ZnO pillared organic saponite nanocomposites. Differential scanning calorimetry (DSC) demonstrated that ZnO pillared organic saponite restrained the appearance of cold crystallization, lowered the glass transition temperature and melting temperature of PLA, and improved the crystallinity of PLA. The results demonstrated that ZnO pillared organic saponite had a good interfacial compatibility and heterogeneous nucleation effect in PLA matrix, and also played an active role in accelerating the crystallization process of PLA.

Characteristics of copper/C films on PET substrate prepared by ECR-MOCVD at room temperature (상온 ECR-MOCVD에 의해 제조되는 Cu/C박막특성)

  • Lee, Joong-Kee;Jeon, Bup-Ju;Hyun, Jin;Byun, Dong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.44-53
    • /
    • 2003
  • Cu/C films were prepared at room temperature under $Cu(hfac)_2-Ar-H_2$ atmosphere in order to obtain metallized polymer by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The room temperature MOCVD on polymer substrate could be possible by collaboration of ECR and a DC bias. Structural analysis of the films by ECR was found that fine copper grains embedded in an amorphous polymer matrix with indistinctive interfacial layer. The increase in $H_2$ contents brought on copper-rich film formation with low electric resistance. On the other hand carbon-rich films with low sheet electric resistance were prepared in argon atmosphere. The electric sheet resistance of Cu/C films with good interfacial property were controlled at $10^8$~$10^0$ Ohm/sq. ranges by the $H_2$/Ar mole ratio and the shielding effectiveness of the film showed maximum up to 45dB in the our experimental range.

Interface State Control of Amorphous InGaZnO Thin Film Transistor by Surface Treatment of Gate Insulator (게이트 절연막의 표면처리에 의한 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 계면 상태 조절)

  • Kim, Bo-Sul;Kim, Do-Hyung;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.693-696
    • /
    • 2011
  • Recently, amorphous oxide semiconductors (AOSs) based thin-film transistors (TFTs) have received considerable attention for application in the next generation displays industry. The research trends of AOSs based TFTs investigation have focused on the high device performance. The electrical properties of the TFTs are influenced by trap density. In particular, the threshold voltage ($V_{th}$) and subthreshold swing (SS) essentially depend on the semiconductor/gate-insulator interface trap. In this article, we investigated the effects of Ar plasma-treated $SiO_2$ insulator on the interfacial property and the device performances of amorphous indium gallium zinc oxide (a-IGZO) TFTs. We report on the improvement in interfacial characteristics between a-IGZO channel layer and gate insulator depending on Ar power in plasma process, since the change of treatment power could result in different plasma damage on the interface.

Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC (고분자전해질 연료전지 분리판용 316L 스테인리스강의 표면특성에 미치는 질소 이온주입 효과)

  • Kim, Min Uk;Kim, Do-Hyang;Han, Seung Hee;Kim, Yu-Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.722-727
    • /
    • 2009
  • The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.

A Study on Thermal and Mechanical Interfacial Properties of Difunctional Epoxy/PMMA Blends (이관능성 에폭시/폴리메틸메타크릴레이트 블랜드의 열적 및 기계적 계면 특성)

  • 박수진;김기석;이재락;민병각;김영근
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.10-17
    • /
    • 2004
  • In this work, the blend system prepared from epoky(DGEBA)/polymethylmethacrylate(PMMA) was investigated in thermal and mechanical interfacial property measurements. The thermal properties were carried out by DSC, DMA, and TGA measurements. Also, the surface free energy and fracture toughness were determined by contact angle and critical stress intensity factor($K_{IC}$), respectively. And the fracture surface was observed by SEM after $K_{IC}$ tests. As experimental results, the curing temperature and glass transition temperature were slightly increased in addition of PMMA. Surface free energy of the blends showed an improved value at low contents of PMMA which could be attributed to the both increasings of London dispersive and polar components. From measurement of $K_{IC}$ of the blends, the highest value was found at 5 phr. This was due to the increasing of compatibility or physical interaction in macromolecular chains between DGEBA and PMMA of the blends.

Surface Modification Effect and Mechanical Property of para-aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성(2))

  • Park, Sung-Min;Son, Hyun-Sik;Sim, Ji-Hyun;Kim, Joo-Young;Kim, Taekyeong;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • para-aramid fibers were treated by atmosphere air plasma to improve the interfacial adhesion. The wettability of plasma-treated aramid fiber was observed by means of dynamic contact angle surface free energy measurement. Surface roughness were investigated with the help of scanning electron microscopy and atomic force microscopy. The tensile test of aramid fiber roving was carried out to determine the effect of plasma surface treatments on the mechanical properties of the fibers. A pull-out force test was carried out to observe the interfacial adhesion effect with matrix material. It was found that surface modification and a chemical component ratio of the aramid fibers improved wettability and adhesion characterization. After oxygen plasma, it was indicated that modified the surface roughness of aramid fiber increased mechanical interlocking between the fiber surface and vinylester resin. Consequently the oxygen plasma treatment is able to improve fiber-matrix adhesion through excited functional group and etching effect on fiber surface.

Measurement of Electrical Resistance Method in Characterizing the Slip ratio of Carbon fiber/Matrix at the Interface (전기저항 측정법을 이용한 탄소섬유/기지 간 계면에서의 섬유 미끌림 정도 측정방법)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.205-210
    • /
    • 2012
  • The single carbon fiber tensile test was performed with electrical resistance measurement. Tensile property of single carbon fiber which accompanied by the relationship between the electric resistance and the strain was investigated. Since the collected data showed a linear relationship between them, the coefficient of fiber slip ratio (FSR) was obtained by computation. The fragmentation specimen (FS) was tested under tensile loading, and the single carbon fiber broke first due to the stress transferring form matrix to reinforcing fiber. The stress distribution of carbon fiber could be observed via the electrical resistance change. Slipping between carbon fiber and matrix was predicted based on the fragmentation test results, and the FSR was used to evaluate interfacial adhesion comparatively. The large FSR indicated poor interfacial bonding. Work of adhesion between carbon fiber and matrix was measured to verify the FSR method, and two results exhibited a consistent conclusion.