Browse > Article

Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC  

Kim, Min Uk (Division of Materials Science and Engineering, Korea Institute of Science and Technology (KIST))
Kim, Do-Hyang (Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University)
Han, Seung Hee (Division of Materials Science and Engineering, Korea Institute of Science and Technology (KIST))
Kim, Yu-Chan (Division of Materials Science and Engineering, Korea Institute of Science and Technology (KIST))
Publication Information
Korean Journal of Metals and Materials / v.47, no.11, 2009 , pp. 722-727 More about this Journal
Abstract
The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.
Keywords
polymer electrolyte membrane fuel cell; bipolar plate; 316L stainless steel; nitrogen ion implantation; interfacial contact resistance;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 S. J. C. Cleghorn, X. Ren, T. Espringer, M. S. Wilson, C. Zawodzinski, T. A. Azwodzinski, and S. Gottesfeld, Int. J. Hydrogen Energy 22, 1137 (1997)   DOI   ScienceOn
2 Dae-Geun Nam, Surface Treatment of Stainless Steel for Polymer Electrolyte Membrane Fuel Cell Separator, p.43, Seoul National University (2007)
3 H. Wang, M. P. Brady, G. Teeter, and J. A. Tumer, J. Power Sources. 138, 86 (2004)   DOI   ScienceOn
4 H. Wang, M. A. Sweikart, and J. A. Turner, J. Power Sources. 115, 243 (2003)   DOI   ScienceOn
5 P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, and J. M. Moore, J. Power Sources 80, 235 (1999)   DOI   ScienceOn
6 J. Ihonen, F. Jaouen, G. Lindbergh, and G. Sndholm, Electrochimica Acta. 46, 2899 (2001)   DOI   ScienceOn
7 J. R. Selman, 'Fuel Cells; Trends in Research and Application', Electric Power Research Institute, Calif. (1986)
8 D. Linden, Handbook of Batteries and Fuel Cells, Mcgraw-HillNY (1984)
9 H. Y. Lee, S. H. Lee, J. H. Kim, M. C. Kim, and D. M. Wee, J. Kor. Inst. Met. & Mater. 45, 602 (2007)
10 S. H. Lee, J. H. Kim, M. C. Kim, D. H. Chun, and D. M. Wee, J. Kor. Inst. Met. & Mater. 45, 44 (2007)
11 T. M. Besmann, J. W. Klett, J. J. Henry, Jr., and E. L.-Curzio, J. Electrochem. Soc. 147, 4083 (2000)   DOI   ScienceOn
12 D. P. Davies, P. L. Adcock, M. Turpin, and S. J. Rowen, J. Appl. Electrochem. 30, 101 (2000)   DOI   ScienceOn